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Abstract 

Due to the increasing consequences of climate change, many areas in Alberta are becoming prone 

to wildfires that threaten urban infrastructure, defined as the Wildland-Urban Interface (WUI) 

fires. In the last decade, wildfires in Canada have burned an area equivalent to 2.9 million hectares. 

It is, therefore, necessary to develop a more advanced framework to determine fire behaviour 

parameters such as rate of spread (ROS) and head fire intensity (HFI) at the micro-scale. This 

would enable urban decision-makers to take decisive actions toward more resilient infrastructure 

systems. 

The framework proposed in this research employs street-level crowdsensing videos to extract up-

to-date micro-scale fuel information for the fire behaviour prediction system. Automated satellite 

imagery analysis is also applied to extract fuel information in areas with limited crowdsensing data 

availability. AI-based object detection and image segmentation algorithms have been developed 

to detect fuel types and features from the image data. 

The Kinsmen Sport Centre in Edmonton was studied as the building of interest, and the inputs 

from crowdsensing data for August 16th and November 1st, 2022 were used to calculate the rate 

of spread and head fire intensity. This study demonstrates the potential of crowdsensing-based 

methods to extract detailed and up-to-date fuel information necessary for developing strategies to 

mitigate fire risks in WUI areas. 

1 Introduction  

Due to the increasing risk of climate change in the coming years, many areas in Canada where 

wildlands and urban development meet are becoming more susceptible to wildfires. National 

Guide for Wildland-Urban Interface (WUI) Fires [1], issued by the National Research Council of 
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Canada, estimated that 5,553 fires happened in the last decade, damaging around 2.9 million 

hectares of wildland. Urban areas, particularly those situated close to wildlands, are becoming 

more vulnerable as they are located within or near densely forested areas. A recent example is the 

fire that occurred in the city of Lytton, BC on June 30, 2021, which destroyed 151 buildings and 

claimed the lives of 2 people [2]. According to a summary report to the British Columbia FireSmart 

Committee, a fundamental cause of the disaster was the lack of appropriate mitigation on 

vulnerability and exposure of structures to fire-prone wildland areas [2]. In regards to the City of 

Edmonton, river valley fires in 2016 [3] and a most recent one in 2023 [4] are examples of how 

important could be the WUI fire risk assessment for the resiliency of urban buildings and 

infrastructure in a resilient city. 

Although several empirical and accurate approaches have been formulated to estimate the 

fire behaviour in forest fires such as Anderson [5] and Van Wagner [6], they have limited 

approaches to estimate the risk of a wildland fire near buildings and human-made structures. On 

the other hand, National Guide for WUI Fires [1] provides recommendations to reduce the WUI 

fire risk on buildings yet it offers a simplistic approach to estimate the fire behaviour near building 

areas compared to the empirical approaches, presumably due to the lack of real-time data 

availability. Effective features such as seasonal changes in deciduous trees, the curing effect on 

grasses, and the crown base height on conifers, are fundamental parameters that are crucial in 

estimating fire risk. 

 Most common wildfire risk assessments are performed using satellite and aerial images. 

Regarding WUI, employing such technologies for urban vegetation mapping has been the subject 

of previous studies [7]. These technologies allow researchers to capture high-resolution images 

from different angles, making it easier to map urban vegetation cover. One of the advantages of 

using satellite imagery for urban vegetation mapping is its ability to cover large areas quickly and 

efficiently. Additionally, satellite imagery can provide data over extended periods, allowing 

researchers to analyze vegetation cover changes over time. UAV imagery provides even higher 
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resolution images and is useful for mapping small areas or capturing images of vegetation in 

difficult -to-reach locations. However, the use of satellite and UAV imagery has some 

disadvantages. Atmospheric conditions such as cloud cover and haze can reduce the quality and 

accuracy of these images. The cost of obtaining and processing satellite or UAV imagery can also 

be high, which may limit its use in some research projects. Moreover, it is important to note that 

these methods may not provide dynamic and up-to-date information about fuel conditions due to 

the fact that they are not updated frequently. Therefore, while remote sensing techniques can be 

an effective tool for the initial mapping and monitoring of urban vegetation, they should be 

integrated with ground-based regularly-updated sources for a more comprehensive understanding 

of vegetation dynamics in urban areas. 

Recent literature has highlighted trends in assessing urban fuels along street networks, 

which have gained attention and are promoted by a larger number of municipalities [8]. The first 

trend is the growing availability of low-cost, detailed, and crowd-sourced street-level imagery, 

which comprises photographs of street scenes taken from the ground [9, 10]. The second trend is 

the success of Convolutional Neural Networks in extracting abstract features and objects in 

imagery, out-competing traditional methods [11]. Street-level imagery is being used to estimate 

the percentage of detected canopy-covered pixels relative to the total number of pixels in an image, 

which quantifies the ñperceived urban canopy coverò [12]. Similarly, Li et al. [13] used green 

pixels in street view scenes to estimate the percentage of vegetation in streets. 

The technique of using street-level imagery along with deep learning has been employed 

to improve the accuracy of tree inventories based on coarse street addresses with accurate 

geographic coordinates [14]. Laumer et al. [14] utilized this method and were able to match 38% 

of over 50,000 identified street trees to their respective street-level addresses. Meanwhile, Wegner 

et al. [15] developed a workflow that combines the results of Faster Region Convolutional Neural 

Network (R-CNN) tree detection from Google Street View (GSV) and aerial imagery with data 

from Google Maps in a probabilistic model to automatically detect and geolocate street trees. They 



 

 

 

4 | P a g e 

 

 

 

were able to classify 18 different species among the detected trees by using street-level and aerial 

imagery. 

This research aims at developing a framework that will apply novel technologies and 

methods to automate the real-time collection and processing of urban fuel images using artificial 

intelligence (AI) and computer vision, applied to high-resolution satellite images as well as 

crowdsensing videos from car-mounted cameras to address previous limitations and provide 

updated WUI fire risks. This research is performed in multiple stages. First, the satellite images 

will be analyzed to create automated priority zones around buildings considering topography 

effects, as well as automatic micro-level fuel mapping through employing convolutional neural 

networks (CNN). In the next stage, street-level crowdsensing videos from car-mounted cameras 

will be analyzed to identify the type and characteristics of fuels such as curing of the grass, seasonal 

changes on deciduous, and the crown base height of conifers. In the final stage, the Fire Behavior 

Prediction (FBP) and Fire Weather Index (FWI) systems will be implemented to calculate the real-

time fire intensity map around buildings. Therefore, the updated fire risk map will help decision-

makers in mitigating the risk of fires in WUI areas and increases the resilience of future smart 

cities. It is worth noting that throughout this report, the results for each step will be presented for 

the Kinsmen Sport Centre building located in the Edmonton river valley. However, the automated 

process proposed in this study makes it possible to create similar results for any other building 

assuming the availability of the necessary data. 

2 Satellite Image Analysis 

In this section, the automated analysis performed on satellite images is presented. First, topography 

analysis and priority zone detections are discussed. Then, micro-level fuel detection using satellite 

images is presented. 
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2.1 Topographic and Priority Zone Analysis 

One of the important factors affecting the fire risk intensity is topography. As the wind blows 

upward, the flame preheats the fuels located up the hill, causing higher spread levels compared to 

a flat terrain [1]. This step of the analysis follows the WUI Guideline suggestion in implementing 

ground slope effects to adjust priority zones around buildings, which will be covered below. 

The first step is to extract the topographic information for the entire city of Edmonton using 

the open-source database CanVec Series managed by the Government of Canada [16]. After 

finding the elevation data points, the percent ground slope will be calculated as: 

 Ϸ ὋὶέόὲὨ ὛὰέὴὩ
  

 ρππ Ϸ (1) 

Fig. 1 shows the topographic map and the percent ground slope of the area around the 

Kinsmen Sport Center building. The percent slope is then used to calculate two parameters, the 

spread factor which scales the rate of spread of the wildfire (m/min) based on how steep the terrain 

is and will be explained in more detail in the As reported in the preceding sections, the 

crowdsensing data from car-mounted cameras can overcome major issues facing satellite-based 

analysis. However, it also has some limitations. For instance, it only can determine fuel 

characteristics along the road and it cannot cover and extract fuel information inside forested and 

parkland areas where roads are not available. Thereby, there is a need to integrate the large-scale 

but low-detailed satellite analysis with the small-scale but high-detailed crowdsensing information 

to have a more precise updated understanding of the fire risk for WUI areas. 

Fire Behavior Analysis section, and the ignition or priority zones which is the area surrounding 

the building that needs fuel treatment to prevent wildfires from spreading and causing damage into 

the building [1]. 
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Fig. 1. Topographic map (left) and slope map (right) around the area surrounding the Kinsmen Sport Center building 

According to the WUI Guideline [1], the first priority zone extends 0 to 10 meters from the 

building with the first 1.5 meters being a non-combustible zone. this zone should consist of fire-

resistant vegetative combustibles, and potential fuels that cause surface fires, such as mulch and 

wooden debris, should be removed. In addition, the cured grass should be cut to minimize the 

probability of ignition and the fire intensity if it were to occur. The second priority zone extends 

from 10 to 30 meters. In this area, trees should be trimmed, tree branches should be cut at least 2 

meters from the ground and separated at least 3 meters from each other while dry grass, debris, 

and needles should be continuously removed. Finally, the third priority zone extends from 30 to 

100 meters and it should contain fire breaks between trees and other potential flammable 

vegetation. 

To find the priority zones, the Open Database of Buildings from Statistics Canada [17] is 

used to map the buildings of Edmonton and then morphological dilation is performed to generate 

a buffer around the Kinsmen Sport Centre building to get its respective priority zones as we can 

see in Fig. 2. 
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Fig. 2. Priority zones around the Kinsmen Sport Centre building without topographic considerations 

The priority zones then need to be adjusted depending on the slope around them since the 

topography is considered a significant factor in how the fire will spread. According to the WUI 

Guideline [1], only the second and third priority zone should be adjusted depending on the slope 

as follows: 

1) If the slope within the second or the third zone is more than 30% but less or equal to 55%: 

a. The priority zones should be expanded by a factor of 2 in the downward direction: 

i. The second zone is extended from 30 to 60 meters. 

ii.  The third zone is extended from 100 to 200 meters. 

b. The priority zones should be expanded by a factor of 1.5 in the horizontal direction: 

i. The second zone is extended from 30 to 45 meters. 

ii.  The third zone is extended from 100 to 150 meters. 

2)  If the slope within the second or the third zone is more than 55%: 

a. The priority zones should be expanded by a factor of 4 in the downward direction: 

i. The second zone is extended from 30 to 120 meters. 
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ii.  The third zone is extended from 100 to 400 meters. 

b. The priority zones should be expanded by a factor of 2 in the horizontal direction: 

i. The second zone is extended from 30 to 60 meters. 

ii.  The third zone is extended from 100 to 200 meters. 

Regarding Kinsmen Sport Centre's surrounding region, the areas with slope ranges of 30~55% and 

above 55% are illustrated in Fig. 3a and Fig. 3b, respectively. Note that the priority zones in this 

figure do not account for the slope effects. 

 

 

(a) (b) 

Fig. 3. Areas with slope ranges of (a) within 30% to 55% and (b) above 55% surrounding the Kinsmen Sport Centre 

building (circled in red represent the slopes inside the priority zones) 

As seen in Fig. 3, several regions with slopes greater than 30% but less than 55% are within the 

second and third priority zones; therefore, we need to extend them by a factor of 2 in the southeast 

direction and by a factor of 1.5 in the remaining direction as per the rules described in the previous 

page. This is automatically done by changing the buffer used to create the priority areas. The 

resulting slope-adjusted priority zones around the Kinsmen Sport Centre building are shown in 

Fig. 4. 
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Fig. 4. Slope-adjusted priority zones around the Kinsmen Sport Centre building 

2.2 Fuel Identification and Classification  

Fuel identification and classification is an important step in identifying several primary 

characteristics of fi re behaviour. The FPB system fuel classification is based on the intrinsic 

properties of the area such as composition, floor cover, organic layer, stand structure, etc. [18]. In 

this research, FBP-based fuel types that are commonly found in Edmonton are considered, as seen 

in Table 1. 

The current fuel map used in the Canadian Fire Behavior Prediction (FBP) System, shown 

in Fig. 5, was derived from forest attribute data based on satellite imagery acquired by NASA 

sensors, where the fuel types were assigned based on vegetation type, tree species, crown closure, 

stand height, and other attributes [19]. However, a drawback of this fuel map is that it is on a 

macro-level scale which is not suitable for urban-scale fire risk analysis. Thus, micro-level fuel 

mapping needs to be employed for WUI fire risk assessment. 
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Table 1. Fuel Type and Classification [18] 

Fuel Type Name FBP Label Description 

Deciduous Forest D-1 
The fuel type is composed of moderately trembling aspen, white birch, 

and balsam poplar trees with medium to tall shrubs and herb layers. 

They can be leafless due to spring, fall, or disease. 

Boreal Spruce Forest C-2 

The fuel type is composed of spruce. It contains continuous shrubs; 

moderate woody fuels and their tree crowns might extend to the ground 

which poses a higher risk of crown fires since surface fires can easily 

spread into them.  

Mature Jack Forest C-3 
The fuel type is composed of jack or lodgepoles pine, and their tree 

crowns are separated from the ground. Sparse conifer understory may 

be present. 

Mixed Wood Forests M-1/M-2 

Fuel type is composed of a mix of conifers and deciduous. The fire 

behaviour of these fuels will depend on the composition percentage of 

deciduous/conifers and whether they are leafless (M-1) or with leaf 

(M-2). 

Grass O1 
The fuel type is composed of continuous standing grass. The fire 

properties of this fuel will depend on the percent of curing or dead and 

whether is matted like in early spring or standing like in late summer. 

 

Fig. 5. FPB Fuel Map from the Department of Natural Resources Canada [19] 
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This step of the research aims at developing an automatic and accurate process that will 

identify fuels on a micro-level scale according to the FPB system. Previous studies emphasize the 

use of convolutional neural networks (CNN) to identify wildland fuels in satellite images, such as 

Alipour et al. [20] which focused on the American fuel system, and Lopez-De-Castro et al. [21] 

which focused on the Spanish fuel system. However, no similar process was found for the 

Canadian wildfire system. 

A CNN is a type of neural network that is used to process, classify, and identify objects in 

images. It has a convolutional layer and a significant number of parameters in a neural network 

that can be adjusted from a ñtrainingò dataset. In this research, a ResNet-50 architecture, shown in 

Fig. 6, is employed to train a model using high-resolution satellite images provided by Maxar 

Technologies Inc., which are publicly accessible through the Google Maps API. The first step is 

to extract and label 496 summer satellite images across the Edmonton city region presented in Fig. 

7. The assigned pre-labels were grass, trees, and void. Later, more classes will be included 

according to the FBP fuel system. 

 

Fig. 6. Simplified Architecture of a Convolutional Neural Network 
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Fig. 7. Summer Satellite Images (Left), Label Masks (Center), and Overlay Maps (Right) 

The segmentation process in the summer satellite images achieved a validation accuracy 

of 93%. However, a limitation of using summer satellite images is that it is hard to differentiate 

between types of trees, mainly between conifers and deciduous. However, employing winter 

satellite images will address this major challenge since the conifer foliage are noticeable among 

leafless deciduous trees. Through training another CNN of ResNet-50 with 80 labeled winter 

satellite images, shown in Fig. 8, it was possible to identify coniferous areas with a verification 

accuracy of 82% and a testing accuracy of 72.9%. The deciduous areas would then be detected by 

subtracting coniferous areas from tree canopies from summer satellite analysis. 
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Fig. 8. Winter Satellite Images (Left), Label Masks (Center), and Overlay Maps (Right) 

Following the detection of the coniferous, deciduous, and grass-covered areas using the 

CNN, which combined results are shown in Fig. 9, there is a need to differentiate forests from 

smaller canopy areas. Forest could be defined using the definition from the Food and Agricultural 

Organization (FAO) of the United Nations [22] as ñland spanning more than 0.5 hectares with 

trees higher than 5 meters and a canopy cover of more than 10 percentò. Therefore, separated 

canopy areas detected from CNN will be compared with the minimum forest area to extract forest 

regions. This process is presented in Fig. 10 for Kinsmen Sport Centre surrounding region. 
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 Fig. 9. Satellite Image of Kinsmen Sport Center Building (Left), Label Masks (Center), and Overlay Maps (Right) 

  

Fig. 10. Isolated canopy areas shown in different colors (left) and areas considered forests (right) 

 Regarding fuel classes, the composition of each of the forested areas will be compared with 

the FBP fuel classification. Fig. 11 represents the flowchart of the FBP-based forest fuel 

classification [23]. It should be noted that in this study, different conifer types such as white and 

black spruce (C-2) or mature jack and/or lodgepole pines (C-3) are not classified separately for 

simplicity, which yields a general conifer class (C). Future studies will be dedicated to 

implementing more fuel types and increasing detection accuracies. 


























































