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● EXECUTIVE SUMMARY 

This report is submitted to the City of Edmonton in partial fulfillment of deliverables for the 

research project titled “Impact of Mobile Speed Enforcement (MPE): An Analysis of the Duration 

between Collisions at Enforced Sites.” The primary goal of this research is to study the potential 

impact of the MPE deployment efforts on the duration between two consequent collisions. The 

project involved studying 250, 175, 212, and 219 sites in 2019, 2018, 2017, and 2016, respectively. 

These sites had varying traffic volume levels, roadway categories, and conditions. The project was 

performed in two phases: preparing the data for testing and applying a rigorous statistical analysis. 

When deployed systemically, MPE forces drivers to comply with the posted speed limit 

and adopt a safer driving behaviour. The main objective is to explore the influence of deployed 

MPE on the duration between collisions, particularly to enhance efficiency when deploying limited 

enforcement resources and improving traffic safety. The report will also cover survival analysis 

and hazard models in evaluating the City’s MPE program. 

 The data was obtained from the City of Edmonton’s Safe Mobility Section, containing 

collisions data, MPE data, and site information. This data was compiled into a single spreadsheet 

using Site ID information. Subsequently, we scripted a MATLAB code to tabulate the data to 

facilitate a survival analysis. Finally, we applied the survival analysis to the data and investigated 

the relationship between the MPE variables and the duration between collisions. 

 Our analysis supports the positive effect of the deployed MPE hours and visits on 

increasing the duration between consequent collisions, which correspondingly reduced the risk of 

collision occurrence. For instance, the ratio between deployed MPE hours to visits had the highest 

impact on reducing the risk of collision. Moreover, we demonstrate that the grouped sites with 

above-average MPE variables had a higher survival probability than those with below-average 

MPE variables.  
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1 INTRODUCTION 

Traffic collisions claim over 1.2 million lives and cause about twenty million injuries annually (1). 

In Canada, for example, at least five people die daily due to traffic collisions on roads. The road 

safety problem is even more profound in the US, with reports indicating that about 90 deaths occur 

daily (1). However, those figures are gradually reducing with governments adopting systemic, 

multi-approach intervention strategies (2, 3).  

One approach has been to use Automated Speed Enforcement (ASE) programs, especially 

where speeding has been identified as a major cause of collisions. ASE has proven to reduce both 

the severity and frequency of collisions. Previous findings have shown ASE programs to reduce 

crashes by 8.9-to-51% while simultaneously reducing collision fatalities and injuries by 12-to-50% 

(4). Such programs have been effective in many Canadian cities like Winnipeg, Calgary, and 

Edmonton.  

In Edmonton, data indicate that ASE programs have reduced collisions by up to 20% (5). 

The City of Edmonton’s primary goal when employing these programs is to minimize traffic 

crashes and enhance traffic safety. Achieving that implies that the authorities must prioritize and 

map collision risk sites. Accordingly, they must give precedence to ASE deployment at high 

collision sites. Findings from Alberta suggest that Mobile Photo Enforcement (MPE) deployment 

effectively improves safety at these sites (6).  

This study emphasizes the effectiveness of MPE use in reducing the duration between two 

consequent collisions, demonstrated through hazard models, achieved by analyzing collision 

severity, collision frequency, exposure of collision risks, traffic counts, and MPE deployment data. 

Collision sites can be identified by establishing the Equivalent Property Damage Only 

(EPDO) for every kilometre over three years. This method transforms all collisions into an 

equivalent number of damage-only collisions by assigning heavier weights to the various collision 

severity (i.e., injuries, fatalities, and property damage) levels. This measure combines both 

collision severity and frequency to formulate a single performance criterion that incorporates crash 

counts with higher severity (7). Severe cases can be further normalized based on the road lengths 

by dividing the EPDO collision frequency by the total road kilometres. This measurement helps to 

establish and compare risks to exposed collision locations. Arguably, it is easier to collect road 

length data because several cities in Canada have authenticated databases that have such 

information.   
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Several national and international reports have shown that the introduction of ASE 

programs has had positive outcomes by improving traffic safety (8). For instance, reviews of 

findings worldwide between the late 1990s and 2000s show that the introduction of MPE 

effectively reduces speeding vehicles and collisions by 82 and 51 %, respectively (9). According 

to Li (7), the MPE program is a reliable tool to reduce crashes since the perceived risk of detection 

is heightened with each subsequent deployment, which results in an induced general deterrence 

leading to lower speed violations. 

1.1 Background 

Red-light running and speeding are among the leading causes of road collisions in the US and 

Canada (4). Research suggests that both red-light running and speeding increase one’s risks of 

being involved in a crash and the risk of death and injuries. Studies have shown how these two 

infractions have varied consequences based on magnitude, which increases collision severity 

during such instances. Indeed, research has shown that the chances of being involved in a collision 

and speeding cases are directly proportional (4). According to Evans, when one increases the 

average speed by roughly 1%, the fatality risk rises between 4 and 12% (10). Simultaneously, 

doubling the speed doubles the risks of collisions, injuries, and death, while exceeding the average 

speed by 20% escalates the risks six times the norm (10). Previous meta-analyses engaging more 

than ninety-eight studies concluded that the interrelations between road safety and speed are 

substantial and meet all the categories of causality. Elvik (11) argues that speeding is the single 

highest determinant in traffic fatality cases. Moreover, there is a significant difference in fatality 

risk when a moving vehicle (speed dispersion) moves faster than the surrounding traffic (11). 

Studies suggest that red-light running often results in right-angle collisions, believed to be 

more severe than other collision types (12). In the US, for example, red-light running crashes are 

estimated to cost more than US$14 billion (13). On the other hand, excessive speeding contributes 

to more than 18% of crashes (13). That translates to over 2,000 injuries and deaths every year. 

Meanwhile, red-light running accounts for more than one-quarter of the traffic injuries (14). 

Studies conducted by the Ministry of Transportation Ontario (2014) note that disobeying traffic 

signals accounts for 42% of fatal crashes and 29% of injury crashes.  
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Traffic enforcement is one way the authorities can mitigate the incidences and severity of 

red-light running and speeding. Thus, the subsequent sections shall discuss the implementation of 

MPE technologies in improving safety. 

1.2 MPE Operation 

Several cities have embraced the MPE technology and have registered positive results (i.e. limiting 

speeding and speed-related collisions). For example, the technology has reduced non-fatal and 

fatal crashes in France by 26 and 21%, respectively (15). Additionally, in Charlotte, North 

Carolina, the introduction of MPE has reduced collision cases by an average of 10%. In 

Washington, speeds were reduced by 14%, with a further reduction of 82% based on the number 

of vehicles exceeding the recommended 10 mph (13). In British Columbia, speed-related collision 

numbers shrank by 25% in enforcement locations (15). Moreover, there was a 22% reduction in 

collisions in Australia and a further 22% reduction in various collision cases, culminating in a 38% 

fall of collision-related injuries (15).  

However, despite the reported success cases worldwide, it is unclear how the technology’s 

efficacy in enhancing safety is recorded. Ordinarily, the primary concern has been allocating 

resources to obtain maximal safety impact (15). While comprehensive studies have focused on the 

methodologies, procedures, and performance measures applied in verifying the effectiveness of 

MPE programs, there are limited studies that underscore the systematic design processes that 

control the initialization and operations of the technology (15). Thus, this research aims to 

incorporate the program performance information in the literature alongside the data obtained from 

its enforcement to establish a robust study on the MPE’s effectiveness in the City of Edmonton.  

1.3 Safe Mobility Strategy 

In 2015, the City of Edmonton (CoE) adopted Vision Zero, aiming for zero traffic-related fatalities 

and severe injuries and based on the belief that traffic collisions are preventable and predictable, 

all road users make mistakes, and life loss is unacceptable. Thus far, fatalities have decreased by 

56% and serious injuries by 30%. To achieve Vision Zero’s goal and provide safe and livable 

streets, the CoE has launched the latest Safe Mobility Strategy 2021-2025. This strategy includes 

three central technical studies and papers: policy and planning, changing the conversation around 

traffic safety, and crash and equity analysis.  
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High injury locations are identified through the crash and equity analysis to help distinguish 

collision causes and identify vulnerable road users at increased risk of crashing. This step supports 

the introduction of proper countermeasures. This strategy considers all transportation modes, 

focusing on providing equal protection for all travellers, including walkers and cyclists unprotected 

by vehicle frames. 

Achieving Vision Zero is not only the responsibility of the CoE’s Safe Mobility section but 

also an integrated work of other partners in the community. Therefore, the Safe Mobility Strategy 

requires the bearing of other groups such as Alberta Health Services (AHS), Edmonton Police 

Services (EPS), researchers in post-secondary institutions, and largely responsible citizens. The 

CoE seeks to achieve the Vision Zero target of zero fatalities and severe injuries by 2032. 

1.4 Project Objective 

To mitigate some of the existing speeding and safety concerns in the CoE, the main objective of 

this project is to correlate the deployed MPE hours and visits with the duration between two 

consequent collisions. The MPE and crash data are analyzed using survival analysis to achieve this 

goal. The project proposes the optimal MPE variable (i.e., hours, visits, or hours per visit) that 

provides the longest duration between collisions that correspondingly reduce the hazard of 

collision occurrence. Moreover, the analysis predicts the expected reduction of collision 

occurrence by deploying MPE variables. These project outcomes help the CoE better understand 

the optimal MPE deployment strategies for different sites in the city. 

1.5 Report Structure 

The remainder of this report is divided into five sections. The following section provides a 

literature review detailing the effectiveness of MPE and the use of survival analysis. The next 

section discusses the data used in this study. The subsequent section summarizes the project 

phases, including preparing the data and applying the survival analysis. The major results of the 

analysis follow with an in-depth discussion of its implications. The final section summarizes the 

conclusions and outlines potential future work.   
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2 LITERATURE REVIEW 

This literature covers the effectiveness of MPE on collisions and speeding by underscoring the 

particular deterrence effects, deployment strategies, and resource allocation. Most of the studies 

reviewed in this research concern the MPE programs’ influence on collisions and vehicle speeds. 

Previous studies have shown that the practical application of MPE can minimize mean vehicle 

speeds by 2% (15). Also, related studies have pointed out that MPE reduces severe collision cases 

causing injuries and fatalities. 

The usefulness of the MPE program can be attributed to the immediacy, unavoidability, 

and punishment severity, which influence driver behaviour and attitude based on the specific and 

general deterrence mechanisms. In other words, potential violators will adhere to the outlined 

standards when they observe fellow violators being punished, called general deterrence. Further 

research has linked general deterrence to dangerous driving education, MPE, and awareness 

campaigns. On the other hand, specific deterrence is where a driver receives a firsthand experience, 

including detection and punishment (17). Li and Guo (2015) postulate that since general deterrence 

is typically compared to specific deterrence, the enforcement authorities should strive to meet the 

greater general deterrence (17). Some scholars posit that general deterrence can be enhanced by 

targeting high-risk periods and locations through non-visible and visible enforcement strategies to 

enhance unpredictability and enforcement publicity while also embracing long-term schemes in 

the enforcement program (15). In Edmonton, for instance, research established that an increased 

number of issued tickets and enforcement sites simultaneously reduced speed-related collision 

cases (8).  

The same report indicated that a reduction in collisions was linked to the MPE program’s 

reliability, notably when implemented with higher location coverage, increased issued tickets, and 

consistent checks (17). Often, various jurisdictions spur the guidance and regulations of these 

programs, such as Alberta’s Automated Enforcement Guidelines (18).  

2.1 MPE Locations 

Typically, MPE units are located at sites known for speed limit violations, collisions, and public 

complaints regarding speeding (19). Additionally, they can be deployed when officers receive a 

special request from local government. Also, there are cases where the conventional speed control 

measures have failed or are infeasible (19). 
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Studies show that public awareness is effective for speed management. For instance, speed 

management programs in Alberta and Manitoba strive to enlighten the public on the problem and 

associated dangers linked to red-light running and speeding (19). Such programs aim to change 

the perceptions and attitudes of drivers by raising awareness of the risks of disregarding traffic 

rules (15). In addition, reports have shown how public awareness can be effective when 

complemented in synergy with other enforcement techniques (15).  

Carnis (2011) highlights those debates over privacy, reliability of cameras, fairness, and 

satisfactory revenue that can emerge in jurisdictions when speed cameras are installed. 

Additionally, there is some skepticism by segments of the population that moderate speeding 

accentuates crash risks. Reports on this issue show that public awareness programs could be 

instrumental in exposing such beliefs (20) by targeting drivers through visible enforcement 

programs, awareness, and education efforts. 

Reports looking into the effect of the yellow light phase on stopping behaviour reveal that 

this approach helps eradicate red-light violations. One report cites that an increase of one second 

in yellow duration, as long as it does not exceed 5.5 seconds, will decrease red-light violations by 

at least 50 % (20).  However, the yellow light phase has few positive outcomes in reducing red-

light crashes because drivers are more willing to try to get through the yellow light to pass the 

junction with a more extended light change interval (20).  

 Moreover, another study assessed MPE using the before-and-after Empirical Bayes (21). 

This method was applied on the urban arterial roads only, and it showed a reduction of 14% to 

20% in collision severities by deploying speed enforcement. The researchers found the greatest 

effect of the MPE for severe collisions and, additionally, that continuous enforcement strategies 

are more functional than discontinuous ones. 

2.2 MPE Program Framework  

This section advances an MPE functional program design that entails four major critical stages for 

performance evaluation and resource allocation. The four stages include:  

● Data gathering 

● Site identification 

● Enforcement scheduling 

● Evaluation 
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Figure 1: MPE Program Framework in Edmonton, AB (Adapted from Kim et al., 2016). 

 

The previous framework shows how the MPE program is prepared and scheduled for 

different sites. First, it starts by collecting site data such as vehicle speed, speed limits, speed 

violations, and reported safety concerns. The next step is site identification, where the sites with 

higher cases of speed violations and collisions should prioritize deploying MPE (4). In other 

words, the frequency of crashes, road type, and related violations constitute the primary 

considerations when allocating the resources for deployment. Researchers should then evaluate 

the effectiveness of the deployed MPE program after either a short or long interval. The importance 

of this framework lies in determining the potential high-risk locations, thus, utilizing the MPE 

resources properly. 

2.3 Survival Analysis & Hazard Models in Transportation Engineering 

Survival analysis and hazard models have been widely used in medical applications while 

increasing for engineering applications. In general, survival analysis determines how long an event 

lasts, either in terms of “survival” or “failure,” with failure often indicating structural failure in 

many engineering applications. However, in transportation engineering, survival analysis is 
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commonly used in relation to the duration of roadway incidents, such as car crashes, impacting 

traffic (22 - 26).  

There are three related functions in survival analysis: the failure function, the survival 

function, and the hazard function. The failure function illustrates the probability of a failure 

incident occurring before the specified point in time (23). Meanwhile, the survival function is the 

inverse of the failure function, illustrating the likelihood the duration continues beyond the 

specified point in time. The hazard function is related to, but distinct from, the other two functions; 

it represents the potential that an individual will “fail” at a specific point in time, having survived 

up until that point (23). For instance, Nam and Mannering examined the duration of traffic 

incidents from a dataset of incidents in Washington State during 1994-1995; these; these related 

to reporting, response, and clearance times by the Washington State Incident Response Teams. For 

their study, they considered the “failure” or the incident to be when an Incident Response Team 

cleared the incident and “survival” to be the persistence of the incident. The hazard function 

represented the probability that the incident would clear at any given time. 

Previous studies show several variables can impact transportation engineering outcomes 

(i.e., incidents). For instance, both young and male drivers (i.e., gender and age variables) received 

speeding citations more often than other gender and age groups using Cox proportional hazard 

models (27). Moreover, drivers who receive speeding citations are at a higher risk of receiving 

more frequent speeding citations, which means speeding citations have little influence on changing 

speeding behaviour than other speeding penalties (27). 

In addition, studies have used survival analysis to examine the vehicles’ mandatory lane-

changing behaviours and related variables using the Cox proportional hazard model (29). 

Researchers showed that the type of vehicle has no significant impact on the duration of mandatory 

lane changing. Furthermore, the survival rate for mandatory lane-changing during the peak period 

is higher than the off-peak time (i.e., time is the considered factor).  

A more detailed explanation of the Cox proportional hazard model can be found in (22, 24, 

30, 31). 

2.4 Summary 

Speeding is considered a primary contributing factor to various types of collisions. Therefore, 

municipalities exert significant effort to deter speed violators using different tools and programs 
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such as speed cameras, increasing the fines for speed violations, Mobile Photo Enforcement 

(MPE), and educational campaigns. MPE is an effective program to force drivers to follow traffic 

rules and drive according to the posted speed limit so as not to face charges and penalties. Previous 

studies explore transportation problems and the relevant factors that can help to improve road 

safety and the transportation system. For instance, different variables such as age, gender, time, 

and vehicle type have significantly affected speeding citations. Moreover, transportation 

engineering studies increasingly use survival analysis. By doing so here, this project aims to 

explore the effectiveness of MPE deployment variables in increasing the duration between 

collisions and consequently reducing the risk of being involved in a crash and, therefore, 

improving road safety.    
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3 DATA DESCRIPTION 

The data used in the analysis was accessed through the Safe Mobility Section in the City of 

Edmonton (CoE) and provided in various Microsoft Excel files: “All-collision data,” “MPE data,” 

“Site,” and “Event.” The all-collision data spreadsheet included historical information about the 

collisions in Edmonton. These files combined data about collision cause, time, location, and travel 

direction. The MPE data file established the MPE control types and the start and the end of the 

MPE at each location. We extracted detailed information regarding the duration and number of 

MPE visits for each location from the spreadsheet. The control types used covered all the feasible 

methods of the MPE in the city. The third dataset was the Site spreadsheet, containing site IDs for 

all locations and a detailed description of each site. The “site ID” info is the core element to link 

all the files together, as will be clarified in the following sections. Finally, the Event dataset was a 

supporting file that provided an overall idea of the traffic count in each location. 

The analysis period for this study is four years, from 2016 to 2019. Although data for the 

year 2020 was available, it was excluded from the study due to the documented impact of the 

COVID-19 pandemic on the transportation system. The data were analyzed for each year 

separately and then integrated for further analysis. The following section will provide 

comprehensive details of the applied analysis method. 

This work was carried out on various sites in Edmonton with different geometric 

characteristics and traffic volumes. All the available MPE control sites with sufficient amounts of 

the required information were analyzed based on the provided data. Therefore, the number of sites 

and locations differ from year to year based on the amount of information available. 
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4 METHODOLOGY  

The procedural methodology for this study was achieved using four software programs: Microsoft 

Excel, MATLAB, SAS, and Stata. We executed the methods in two major stages: i) preparing the 

data and ii) applying the survival analysis. All the steps were examined for each year separately, 

followed by all years combined. We applied this process to explore the relationship between the 

frequency of deployed MPE (i.e., number of visits and hours) and the duration between two 

consequent collisions. Figure 2 shows the workflow summarizing the paper framework. The 

following sections explain the applied method in more detail. 

 
Figure 2: Flowchart of the Methodology Employed 

4.1 Data Preparation  

The Excel sheets requiring tabulation first were required to be used readily in the survival analysis 

(i.e., the second stage). This step aimed to merge all the data files into one, then change all the 

combined files into a survival analysis format. The output from this process was an Excel sheet 

that contained the essential info for each location (i.e., Site ID). While this step could be done 

manually, it would take excessive time to combine all files properly. Therefore, we scripted a 



18 
 

MATLAB code to speed up the processing time. The following subsections clarify this step 

thoroughly.  

4.1.1 Received Data Format  

Multiple Excel sheets contained a large set of data. The following bullets show the files and their 

contents. 

● All collision data: this file included collision code, attachment code, collision key, collision 

cause, collision classification, collision data, collision location name, collision month, 

collision time, collision report year, travel direction, on-street name, and at the street name. 

Table 1 shows a sample of ‘all collision data.’ 

 

Table 1: Sample of All Collision Data. 

#Co
llisi
ons 

COLLISIO
N_CAUSE
_NAME 

COLLISION
_CLASSIFI
CATION 

COLLISION_LO
CATION_NAM
E 

COLLIS
ION_M
ONTH 

COLLISIO
N_REPOR
T_YEAR 

COLLI
SION_
TIME 

DAY_
OF_M
ONTH 

TRAVE
L_DIRE
CTION 

423
332 

FLWD 
TOO 
CLOSELY 

PDO JASPER 
AVENUE, 590 & 
106 STREET 
NW 

1 2017 830 6 NORTH 

423
333 

FLWD 
TOO 
CLOSELY 

PDO JASPER 
AVENUE, 590 & 
106 STREET 
NW 

1 2017 830 6 NORTH 

423
334 

STRUCK 
PRKD 
VEH. 

PDO 107 AVENUE 
NW & 181 
STREET NW 

1 2017 1530 5 UNKNO
WN 

423
335 

STRUCK 
PRKD 
VEH. 

PDO 107 AVENUE 
NW & 181 
STREET NW 

1 2017 1530 5 Not 
Applicab
le 

423
336 

RAN OFF 
ROAD 

PDO 90 AVENUE 
NW & 75 
STREET NW 

1 2017 1300 6 WEST 

 

● Control – MPE: This file is essential as it provides data of control ID, site ID, violation 

category, control type, start date, end date, posted speed, and speed threshold. The data was 

filtered to contain only the MPE control type. Table 2 presents part of the MPE data. 

 

  



19 
 

Table 2: Sample of MPE Control Data. 

Control 
Id 

Site 
Id 

Violation 
Category 

Control 
Type 

Start Date End Date Posted 
Speed 

Speed 
Threshold 

210934 211 Jenoptik Jenoptik 17-Mar-
17 

18-Mar-
17 

100 115 

212995 211 Jenoptik Jenoptik 02-Apr-
17 

03-Apr-
17 

100 115 

214060 211 Jenoptik Jenoptik 10-Apr-
17 

10-Apr-
17 

100 115 

214200 211 Jenoptik Jenoptik 11-Apr-
17 

11-Apr-
17 

100 115 

214924 211 Jenoptik Jenoptik 17-Apr-
17 

17-Apr-
17 

100 115 

 

● Site: site ID, location description, police division, direction, speed, double fine site, speed 

time site, speed posted, photo enforcement posted, and site type. Table 3 represents a data 

sample from the Site. 

Table 3: Sample of Site Data. 

Site Id Location Description Direction Speed Speed Posted Photo 
Enforcement Posted 

Site Type 

101 100 Ave Between 
 160 - 162 St. 

WB 50 1 1 Photo Radar Camera 

102 Mark Messier 
 Tr  north of 137 Ave. 

NB 70 1 1 Photo Radar Camera 

103 130 St. between  
111 - 113  Ave 

NB 50 0 0 Photo Radar Camera 

104 142 St at 95 Ave NB 60 1 1 Photo Radar Camera 
105 36 St between  

119 - 121 Ave 
NB 50 0 0 Photo Radar Camera 

 

● Jenoptik Event: deployment, site ID, watch date, and traffic. This data was integrated to 

get the traffic count for each site. Table 4 is a sample of the data from the Jenoptik Event.  

 

Table 4: Sample of Jenoptik Event Data. 

Deployment Site Watch Date Traffic 
1965 2747 28-04-17 201 
2870 2504 07-05-19 633 
944 5445 05-10-17 328 

1549 2503 04-02-17 1 
5549 2552 20-12-19 288 
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4.1.2 Merging & Preparing All the Files  

We scripted and tested a MATLAB code for the raw data files to overcome the difficulty of 

merging files manually. The code began by reading the input data files and storing them in four 

tables (All-collision data, Site IDs, MPE data, and Traffic data). Then it set up the Excel files to 

store the output and all the headers for the data. Following on, the code looped through all the Site 

IDs to determine locations for each, i.e. the street and avenue number/name along with the 

direction of travel (e.g. Site ID 104 represents the location of 142nd street and 95th avenue, 

Northbound direction). Thereafter, we applied a filter to extract all the collisions for particular 

locations within the given site description (i.e., street and avenue name and travel direction) and 

information to determine collision dates, times, and seasons (i.e., winter, summer, etc.) by looking 

at each collision individually and checking its location.  

Using another loop, we generated a cycle through all the collisions to sort and calculate the 

number of hours visited, number of visits, traffic volume, and the time difference between 

collisions. We calculated the number of hours visited by filtering all the data from the MPE data 

table for those within the given year. From this, we could extract the time from the start to the end 

of the visit. We then calculated the number of visits by counting the total visits from the MPE data 

table that fell within the time range. The traffic count was calculated by filtering all the data from 

the traffic data table to search only for the ones within the given year and extract the amount of 

traffic.  

All these loops were executed on all the site IDs for each year. Lastly, we stored all the 

calculated data in an Excel spreadsheet by year (i.e., extracted an Excel sheet for each year). The 

average processing time for this step was 90 minutes. The code outputs were visually inspected to 

verify accuracy and matched the expected results. Table 5 shows a sample of the output of this 

step for 2019. 

 

 



Table 5: Sample of the Output Data from The Data Preparing Phase. 

Site 
ID 

Days b/w 
Coll. 

Event 
Occ. 

1st Coll. Date 2nd Coll. Date # Times 
visited 

# Hours Hours/
visit 

1st coll. 
Season 

2nd coll. 
Season 

Duration 
Season 

Sev. Coll. Cause 

2449 233.7 1 01-Jan-2019 22-Aug-2019 16:59:59 144 453.43 3.15 Winter Summer Transition PDO FLWD TOO CLOSELY 

2449 38 1 22-Aug-2019 16:59:59 29-Sep-2019 16:59:59 1 3.62 3.62 Summer Winter Transition Min. FLWD TOO CLOSELY 

2449 92.3 0 29-Sep-2019 16:59:59 31-Dec-2019 42 124.77 2.97 Winter Winter Winter N/A N/A 

2452 53.7 1 01-Jan-2019 23-Feb-2019 16:59:59 5 13.50 2.70 Winter Winter Winter PDO LFT TURN X PATH 

2452 310.3 0 23-Feb-2019 16:59:59 31-Dec-2019 56 144.68 2.58 Winter Winter Winter N/A N/A 



 

4.1.3 K-Means Clustering  

We used K-means clustering to categorize the sites based on the MPE number of hours, MPE 

number of visits, MPE hours/visit, and traffic count. This form of clustering groups observations 

together with similar characteristics (32), i.e. into clusters in which each observation belongs to 

the cluster with the nearest mean. First, the number of clusters (K) should be determined; in our 

work, we used two clusters to categorize the variables into two groups: above-average and below-

average. Then, two cluster seeds are randomly specified as the clusters’ centroids. After that, each 

observation is assigned to one of the clusters based on its proximity that had the least squared 

Euclidean distance. Finally, the centroid of each cluster is calculated, and iterations are done until 

convergence is reached (i.e., the same points are assigned to the same cluster in repetitive cycles). 

We used SAS software to apply the K-means clustering process. Though the K-means was 

conducted in SAS, we entered and clustered the data into two groups. Figure 3 summarizes the K-

means clustering algorithm, and Table 6 shows the clustered groups. 

 

 

Figure 3: Demonstration of the Standard Algorithm (source: Wikipedia). 
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Table 6: The Clustered Groups. 

Variable Group 1 Group 2 
#MPE hours Above-average MPE hours Below-average MPE hours 
#MPE visits Above-average MPE visits Below-average MPE visits 

#MPE 
(hours/visit) 

Below-average MPE HpV Above-average MPE HpV 

Traffic volume Below-average traffic 
volume 

Above-average traffic 
volume 

 

4.2 Survival Analysis Method 

The second phase in the methodology was to apply the survival analysis process. We chose 

survival analysis to study the time to event occurrence. Thus, in this case, the failure event was the 

collision occurrence. The basic concepts of the survival analysis are to define the hazard and 

survival functions, create the Kalan-Meier survival curves for different variables and compare two 

survival curves using the log-rank test. We used Stata Statistical Software to execute this step. Our 

survival analysis entailed five stages. By the end of this process, the relationship between the MPE 

variables (number of hours, number of visits, and the ratio hours/visit) and the duration between 

two consequent collisions could be determined. The following subsections will illustrate the 

implemented phases. 

4.2.1 Inputting the Data 

The data must first be classified as survival-time data and tabulated to include the time and failure 

variables to begin this process. The time variable represents the duration between two consequent 

collisions in days, and the failure variable is a binary value, i.e., 0 or 1. The failure value is 0 when 

there is no collision and 1 when there is a collision during the specified period. Moreover, the data 

in this step (Table 4) includes site ID, duration between every two consequent collisions, first and 

the second collision dates used to estimate the time between collisions, number of deployed MPE 

visits, number of deployed MPE hours, the ratio between the number of MPE hours to the number 

of MPE visits (HpV), first and second collisions occurrence season, collision severity, collision 

cause, land-use, and traffic count.  
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4.2.2 Variables 

The variables employed here were the number of deployed MPE visits, number of deployed MPE 

hours, the ratio between them (HpV), and traffic count. We will examine the impact of these 

variables on the duration between two consequent events (i.e., collisions) in the survival analysis 

phase.  

4.2.3 Cox-proportional Hazard Model 

The cox-proportional hazard model investigates each variable’s effect on the time between 

collisions. This model is the most popular technique of the semi-parametric methods since it does 

not make a hazard baseline assumption, a benefit when choosing a predictive model (33). It 

explores the rate of a specific event occurrence (i.e., hazard rate) as an influence on different 

factors. 

The general Cox proportional hazard model is; 

 h (t, x) = h0 (t) exp(β1x1 + β2x2 +…+βixt) 

The Cox regression prototype can be changed into another equation by the logarithmic 

transformation (Shi et al., 2014, p. 33); 

𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙 ℎ (𝑡𝑡,𝑥𝑥)
ℎ0 (𝑡𝑡)

 = β1x1 + β2x2 +…+βixt 

The relative risk RR can be denoted as  ℎ (𝑡𝑡,𝑥𝑥)
ℎ0 (𝑡𝑡)

, then, the COX regression is the linear model 

of the logarithm of the RR. Under other covariate variables remaining constant, βi shows the 

logarithm changes of the RR with the unit change of the ith covariate variable. Based on the 

definition above, the COX regression has the following properties: 1) If βi>0, the ith variable is a 

risk factor, and its hazard may be higher with the increasing time. And this indicates that the 

incident may be disposed of quickly. 2) If β<0, it means this variable is a protective factor, and the 

duration of the traffic incident is longer, which indicates the incident cannot be disposed of in time. 

3) If β=0, this variable has nothing to do with the traffic incident duration. 

The outcome of this step is a regression model that relates the deployed MPE hours, visits, 

and HpV separately. These models provide the hazard ratio for each variable; this report will now 

explore the impact of the variables above. 
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4.2.4 Kaplan-Meier Hazard Estimates (KM) 

The KM hazard estimate is a univariate nonparametric analysis used to estimate the survival 

probability from observed survival times (34). Our study established the KM survival curve to 

differentiate the impact of MPE variables on different road categories. It is generated by taking the 

product of conditional probabilities sequences and obtaining the standard estimator (i.e., KM 

estimator). The complete details of how the calculation is done have been provided by (32). As 

shown in the following figure, this curve consists of a series of steps, and each step represents an 

event occurrence (i.e., collision). The survival probability is on the Y-axis of the curve, and the 

time duration is on the X-axis. Thus, the cumulative survival probability can be extracted at any 

time point by obtaining the corresponding value on the Y-axis. The estimated cumulative survival 

at any time point is at 95% confidence intervals.  

If Ti represents the event period of the traffic of the ith term, and the time-series of the traffic 

event in the state is T1 < T2 <… Tn, then the Kaplan-Meier based survival likelihood of traffic 

occurrence period represented by Š (t) is given by; 

 Š (t)= ∏
𝑇𝑇𝑖𝑖
𝑐𝑐 ∑ 𝑡𝑡

𝑛𝑛−𝑖𝑖
𝑛𝑛−𝑖𝑖+1

 

In this case, the traffic event time is represented by 𝑇𝑇𝑖𝑖𝑐𝑐  of the ith term entire samples. 

However, for a sample to be complete, it has to attain certain conditions, including, 𝑇𝑇𝑖𝑖𝑐𝑐 is less than 

t besides being a positive integer, where 𝑇𝑇𝑖𝑖𝑐𝑐 ≤ 𝑡𝑡 and𝑇𝑇𝑖𝑖𝑐𝑐 ∈ 𝑍𝑍 (36).  

 

 

Figure 4: Example of KM Graph. 
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The curve shown in Figure 4 provides a beneficial data summary that can be utilized to 

estimate measures as median survival time. It plots the difference between the survival probability 

for two comparable groups (i.e., clustered variables). The data of these groups should be in a 

categorical format as this method estimates the cumulative survival probability for each group 

separately. After being clustered, we determined these groups based on the previously outlined K-

means Clustering method performed in Stage 1. 

Therefore, this step’s output is a graph for each variable that shows the survival probability 

at any time point during the analysis period. Also, it can be used to compare the survival 

probabilities for different categorical groups. The survival probability for each group is generally 

checked against the mean value (50%) to facilitate comparison between the groups.  

4.2.5 Comparing Two Survival Functions Using Log-rank Test 

There are two methods to compare survival functions; the first method uses a prespecified time 

point; the other compares the overall survival experience, called the log-rank test. The log-rank 

test is considered more reliable than the prespecified time point method for reasons outlined in 

(37). As a result, our study applied and executed the log-rank test across the entire survival time 

range. The test null hypothesis between the two groups is:   

𝐻𝐻0:  𝑆𝑆1 (. )  =  𝑆𝑆2 (. ) 

where the dot represents the whole survival time range. 

The alternative hypothesis is applicable when this null hypothesis is rejected. Moreover, 

the log-rank test compares the observed and the expected number of collisions if the two groups 

have the same survival function. Thus, if the null hypothesis is true, the two groups would have 

the same survival probability, determined based on the p-value. The Chi-square value is compared 

for each group using the standard Chi-square test. By the end of this step, the equity test of the two 

groups shall determine whether or not they have the same survival time probability. In this study, 

the log-rank test is used as a validator for the previous steps as it shows whether the different road 

categories have the same survivability or not.    
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5 DATA ANALYSIS & RESULTS 

The methodology involved two major stages, as shown in Figure 2. The following section 

discusses the results of the implemented procedure, shown for each year separately. In addition, 

the analysis for each year is executed on different groups, as outlined in the following subsections. 

5.1 Survival Analysis Results (2019) 

5.1.1 All Sites 

We applied the methodology to all sites from Jan 1, 2019, to Dec 31, 2019. There were 250 sites 

in Edmonton that had an MPE during this period. These sites experienced 573 collisions, mainly 

classifiable as Property Damage Only (PDO). In addition, there were seven major collisions and 

fifty-two minor collisions. The primary cause was following too closely, often coupled with 

speeding, considered a speeding-related collision cause. For deployed MPE between two 

collisions, the number of deployed MPE visits ranged between 0 to 195, the number of deployed 

MPE hours varied between 0 to 620, and the ratios between hours and visits were estimated as low 

as 0 and high as 4 hours/visit.  

For the all-sites group, we conducted the Cox PH models. We then plotted the Kaplan-Meir 

graphs for different variable groups. Finally, we undertook the log-rank tests. Table 7 a-c 

summarises the results: 

  



28 
 

5.1.1.1 Cox-proportional hazard model 

Table 7: The Hazard Ratio Estimates for the MPE Variables (All Sites). 

 
 Haz. Ratio Std. Err. P>|z| [95% Conf. Interval] 
Deployme
nt Hours 

0.9942 0.0008 0.000 0.9925 0.995 
 

(a) The total number of deployed MPE hours. 
 

 Haz. Ratio Std. Err. P>|z| [95% Conf. Interval] 
Deployme
nt Visits 

0.9795 0.0026 0.000 0.9742 0.9848 
 

(b) The total number of deployed MPE visits. 
 

 Haz. Ratio Std. Err. P>|z| [95% Conf. Interval] 
Hours per 
Visits 

0.7861 0.0235 0.000 0.7413 0.8336 
 

(c) The ratio between the number of MPE visits and hours (HpV). 
 

The results of this group show that there is significant evidence of the MPE impact on 

increasing the duration between two consequent collisions. The deployed MPE hours and visits 

showed only small percentage reductions (1% and 3%, respectively) in the collision hazards. Given 

the percentage difference between the two, one conclusion might be that investing in increased 

visits would produce better outcomes than increasing the number of hours. For instance, if the CoE 

invested four MPE hours, the more significant benefit would result from splitting these into 

different shorter visits. In addition, the ratio of deployed MPE hours to visits (HpV) has a hazard 

ratio (HR) of 0.78, with a reduction of 22% in collision occurrences for locations that had a high 

HpV compared to sites without MPE.  
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5.1.1.2 Kaplan-Meier Graphs 

 
(a) The clustered two groups of deployed MPE hours. 

 
(b) The clustered two groups of deployed MPE visits. 

1 = Above-average  
2 = Below-average 

1 = Above-average  
2 = Below-average 
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(c) The clustered two groups of deployed MPE hours/visit. 

Figure 5: The KM Survival Estimates for The MPE Groups (All Sites). 

 
Figure 6: The KM Survival Estimates for the Clustered Traffic Groups (All Sites). 

  

We compared the survival probability for different locations that experienced two levels of 

deployed MPE (i.e., above-average deployed MPE and below-average deployed MPE) by plotting 

the KM graphs. First, the KM graphs yield the same results regarding the deployed MPE hours and 

1 = Below-average  
2 = Above-average 

1 = Below-average  
2 = Above-average 
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visits, showing that the locations that experienced a high level of MPE hours or visits (above 

average) have higher survivability than the locations with lower MPE hours or visits (below 

average). As shown in Figure 5a, the median survival probability (at 0.5 on Y-axis) for sites with 

above-average deployed MPE hours is 198 days. In comparison, the below-average ones had a 

survival probability of 38 days. Similarly, in Figure 5b, the survival probability at 0.5 on Y-axis 

for sites that had above-average MPE visits is 248 days; meanwhile, the below-average group is 

37 days. Moreover, the groups with below-average MPE hours and visits encountered more 

frequent steps in the KM graphs, indicating that these sites experienced more collisions over a short 

period than the above-average MPE groups.  

Second, Figure 5c shows that, for the clustered MPE hours/visit groups, the sites that 

experienced a higher ratio of the deployed MPE hours to visits have more survival probability than 

the below-average locations. Finally, Figure 6 illustrates that above-average traffic volume 

locations have higher survivability than the below-average sites since drivers tend to speed up 

when roadways have little or no congestion.  
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5.1.1.3 Log-rank Equality Test 

Table 8: The Log-Rank Test for Different Groups (All Sites). 

 
Hours Observed 

Events 
Expected 
Events 

1 
2 

18 
555 

41.37 
531.63 

Total 573 573.00 

Chi2(1) = 14.61 
Pr>chi2 = 0.0001 

 

 
Visits Observed 

Events 
Expected 
Events 

1 
2 

17 
556 

41.74 
531.26 

Total 573 573.00 

Chi2(1) = 14.34 
Pr>chi2 = 0.0001 

 

a) Log-rank test for MPE hours groups b) Log-rank test for MPE visits groups 
 

HpV Observed 
Events 

Expected 
Events 

1 
2 

228 
345 

126.12 
446.88 

Total 573 573.00 
Chi2(1) = 111.63 
Pr>chi2 = 0.0000 

 

 
Traffic 
Count 

Observed 
Events 

Expected 
Events 

1 
2 

123 
450 

66.91 
506.09 

Total 573 573.00 
Chi2(1) = 55.29 

Pr>chi2 = 0.0000 
 

c) Log-rank test for MPE hours/visit groups d) Log-rank test for traffic volume groups 
 

We conducted the log-rank tests to see if two different groups have the same survivability 

(i.e., null hypothesis) and whether those comply with the results from the KM graphs. Thus, if the 

Pr value is less than 0.05, the tested groups do not have the same survival probability. As shown 

in Table 8, all of the tested groups had Pr < 0.05, which proves the previous results of the KM 

graphs.  

5.1.2 Arterial & Collector Roads 

In this subsection, the analysis process is executed on the arterial and collector sites only. We 

tested this category to examine the impact of MPE on the main roadway categories in Edmonton. 

There were 111 arterial and collector sites with data available for 2019. These locations had 566 

collisions, with the two leading causes identified as following too closely and left turn crossing 

path. These collisions resulted in seven major and fifty-two minor crashes. Table 9 and Figure 7 

a-c show the analysis results, followed by the discussion of the results. 
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5.1.2.1 Cox proportional hazard model 

Table 9: The Hazard Ratio Estimates for the MPE Variables (Arterial and Collector Locations 
Only). 

 
 Haz. Ratio Std. Err. P>|z| [95% Conf. Interval] 
Deployme
nt Hours 

0.99414 0.00085 0.000 0.99247 0.9958 
 

(a) The total number of deployed MPE hours. 
 

 Haz. Ratio Std. Err. P>|z| [95% Conf. Interval] 
Deployme
nt Visits 

0.9791 0.00275 0.000 0.9737 0.9845 
 

(b) The total number of deployed MPE visits. 
 

 Haz. Ratio Std. Err. P>|z| [95% Conf. Interval] 
Hours per 
Visits 

0.78519 0.0234 0.000 0.7405 0.8324 
 

                 (c) The ratio between the number MPE of visits and hours (HpV). 

5.1.2.2 Kaplan-Meier Graphs 

 
(a) The clustered two groups of deployed MPE hours. 

1 = Above-average  
2 = Below-average 
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(b) The clustered two groups of deployed MPE visits. 

 
(c) The clustered two groups of deployed MPE hours/visit. 

Figure 7: The KM Survival Estimates for The MPE Variables’ Groups (Arterial and Collectors 
Locations Only). 

1 = Above-average  
2 = Below-average 

1 = Below-average  
2 = Above-average 
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Figure 8: The KM Survival Estimates for The Clustered Traffic Groups (Arterial and Collector 

Locations Only). 

  

1 = Below-average  
2 = Above-average 
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5.1.2.3 Log-rank Equality Test 

Table 10: The Log-Rank Test for Different Groups (Arterial and Collectors Only). 

 
Hours Observed 

Events 
Expected 
Events 

1 
2 

18 
548 

41.97 
524.03 

Total 566 566.00 

Chi2(1) = 15.21 
Pr>chi2 = 0.0001 

 

 
Visits Observed 

Events 
Expected 
Events 

1 
2 

16 
550 

39.15 
526.85 

Total 566 566.00 

Chi2(1) = 15.14 
Pr>chi2 = 0.0001 

 

a) Log-rank test for MPE hours groups. b) Log-rank test for MPE visits groups. 
 

HpV Observed 
Events 

Expected 
Events 

1 
2 

225 
341 

124.59 
441.41 

Total 566 566.00 

Chi2(1) = 109.52 
Pr>chi2 = 0.0000 

 

 
Traffic 
Count 

Observed 
Events 

Expected 
Events 

1 
2 

123 
443 

68.26 
497.74 

Total 566 566.00 

Chi2(1) = 51.82 
Pr>chi2 = 0.0000 

 

c) Log-rank test for MPE hours/visit groups. d) Log-rank test for traffic volume groups. 
 

The outcomes of the Cox PH models provide almost the same results for all sites. The 

results for all the MPE variables are significant at a 95% confidence interval and had HR values 

less than 1, which reflects the positive impact of deployed MPE variables. The HR for the deployed 

MPE hours/visit surpassed other MPE variables as it resulted in a reduction in collisions 

occurrence of 22%. 

The KM survival estimates for the arterial and collector locations yielded the same 

conclusion for all the sites’ results and followed similar trends. For instance, in Figure 7, sites that 

experienced above-average MPE hours, visits, or HpV possess a higher survival probability than 

the below-average category. In addition, the below-average traffic volume locations have a higher 

risk of collision occurrence, as shown in Figure 8. 

The log-rank tests examined the equity of the survival probability for the clustered groups. 

The Pr values for all tests were significant (i.e., Pr < 0.05). Thus, the log-rank test results compare 

favourably with the outcomes of KM graphs.   
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5.1.3 Arterial Sites Only 

We tested the arterial sites separately to examine the impact of MPE variables. Sixty-four arterial 

sites collectively recorded 436 collisions in 2019. These collisions’ severity was mainly PDO, with 

four major and thirty-eight minor collisions. The leading causes for the arterial road collisions 

were following too closely, left turn cross-path, and improper lane change. Furthermore, the 

deployed MPE hours and visits between collisions ranged from 0 to 620 and 0 to 195, respectively. 

Table 11 a-c, Figure 9 a-c, Figure 10, and Table 12 a-d illustrate the analysis results. 

5.1.3.1 Cox proportional hazard model 

Table 11: The Hazard Ratio Estimates for the MPE Variables (Arterials Only). 

 
 Haz. Ratio Std. Err. P>|z| [95% Conf. Interval] 
Deployment 
Hours 

0.9939 0.00085 0.000 0.99230 0.99567 
 

(a) The total number of deployed MPE hours. 
 

 Haz. Ratio Std. Err. P>|z| [95% Conf. Interval] 
Deployment 
Visits 

0.9798 0.00278 0.000 0.9743 0.9852 
 

(b) The total number of deployed MPE visits. 
 

 Haz. Ratio Std. Err. P>|z| [95% Conf. Interval] 
Hours per 
Visits 

0.78457 0.0255 0.000 0.73609 0.8362 
 

           (c) The ratio between the number of MPE visits and hours (HpV). 
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5.1.3.2 Kaplan-Meier Graphs 

 
(a) The clustered two groups of deployed MPE hours. 

 
(b) The clustered two groups of deployed MPE visits. 

1 = Above-average  
2 = Below-average 

1 = Above-average  
2 = Below-average 
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(c) The clustered two groups of deployed MPE HpV. 

Figure 9: The KM Survival Estimates for the MPE Groups (Arterials Only). 

 
Figure 10: The KM Survival Estimates for the Clustered Traffic Groups (Arterials Only). 

  

1 = Below-average  
2 = Above-average 

1 = Below-average  
2 = Above-average 
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5.1.3.3 Log-rank Equality Test 

Table 12: The Log-rank Test for Different Groups (Arterials Only). 

 
Hours Observed 

Events 
Expected 
Events 

1 
2 

14 
422 

43.37 
392.63 

Total 436 436.00 

Chi2(1) = 23.98 
Pr>chi2 = 0.0000 

 

 
Visits Observed 

Events 
Expected 
Events 

1 
2 

16 
420 

46.85 
389.15 

Total 436 436.00 

Chi2(1) = 24.63 
Pr>chi2 = 0.0000 

 

a) Log-rank test for MPE hours groups. b) Log-rank test for MPE visits groups. 
 

HpV Observed 
Events 

Expected 
Events 

1 
2 

164 
272 

92.37 
343.63 

Total 436 436.00 

Chi2(1) = 74.16 
Pr>chi2 = 0.0000 

 

 
Traffic 
Count 

Observed 
Events 

Expected 
Events 

1 
2 

90 
346 

57.40 
378.60 

Total 436 436.00 

Chi2(1) = 21.85 
Pr>chi2 = 0.0000 

 

c) Log-rank test for MPE hours/visit groups. d) Log-rank test for traffic volume groups. 
 

The Cox PH models showed that the MPE variables had a proactive effect on collision 

occurrence compared to locations not exposed to MPE deployment. For example, the deployed 

MPE hours/visit HR was 0.78, which means an expected reduction in the risk of collision 

occurrence of 22%. These results are significant at a 95% confidence interval. 

The KM survival graphs, shown in Figure 9, emphasize the overall conclusion that the 

higher the level of deployed MPE, the less risk of collisions occurrence. To illustrate, locations 

that had above-average MPE hours had an average survival probability of 231 days, while below-

average MPE hours sites survived for an average of 27 days. In other words, the below-average 

MPE locations experienced more frequent collisions. Moreover, similar to all sites, the survival 

probability for above-average traffic volume locations was higher than those below-average, 

possibly due to changes in drivers’ speeding behaviour that otherwise may lead to a speeding-

related collision. 

Furthermore, the log-rank tests that examine the survival probability equity for two 

different groups were significant as the Pr<0.05 for all the test groups. This means that the survival 
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probabilities for each of the two tested groups were not equal, both proving and matching the 

previous results of the KM graphs. 

5.1.4 Collector Sites Only 

This section examines the effectiveness of the deployed MPE variables to determine whether the 

MPE is more efficient for collector roadways. Forty-eight collector sites included 134 mainly PDO 

collisions in 2019. Moreover, there were two major and fourteen minor collisions. The deployed 

MPE hours between two crashes varied between 0 and 280 hours; the number of deployed MPE 

visits ranged from 0 to 86. In addition, the ratio between the number of deployed MPE hours to 

visits reached four hours/visit. Tables 13 and 14 a-d and Figures 11 a-c and 12 below show the 

outputs after executing the methodology. 

5.1.4.1 Cox-proportional hazard model 

Table 13: The Hazard Ratio Estimates for the MPE Variables (Collectors Only). 

 
 Haz. Ratio Std. Err. P>|z| [95% Conf. Interval] 
Deployment 
Hours 

0.9851 0.00310 0.000 0.9790 0.99119 
 

a) The total number of deployed MPE hours. 
 

 Haz. Ratio Std. Err. P>|z| [95% Conf. Interval] 
Deployment 
Visits 

0.9586 0.00809 0.000 0.9429 0.9746 
 

b) The total number of deployed MPE visits. 
 

 Haz. Ratio Std. Err. P>|z| [95% Conf. Interval] 
Hours per 
Visits 

0.65281 0.04603 0.000 0.5685 0.7495 
 

c) The ratio between the number of MPE visits and hours (HpV). 
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5.1.4.2 Kaplan-Meier Graphs 

 
a) The clustered two groups of deployed MPE hours. 

 
b) The clustered two groups of deployed MPE visits. 

1 = Below-average  
2 = Above-average 

1 = Below-average  
2 = Above-average 
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c) The clustered two groups of deployed MPE visits. 

Figure 11: The KM Survival Estimates for the MPE Groups (Collectors Only). 

 
Figure 12: The KM Survival Estimates for the Clustered Traffic Groups (Collectors Only) 

 

 

 

 

1 = Above-average  
2 = Below-average 

1 = Below-average  
2 = Above-average 
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5.1.4.3 Log-rank Equality Test 

Table 14: The Log-Rank Test for Different Groups (Collectors Only). 

 
Hours Observed 

Events 
Expected 
Events 

1 
2 

130 
4 

124.06 
9.94 

Total 134 134.00 

Chi2(1) = 4.08 
Pr>chi2 = 0.0433 

 

 
Visits Observed 

Events 
Expected 
Events 

1 
2 

129 
5 

116.85 
17.15 

Total 134 134.00 

Chi2(1) = 10.68 
Pr>chi2 = 0.0011 

 

a) Log-rank test for MPE hours groups. b) Log-rank test for MPE visits groups. 
 

HpV Observed 
Events 

Expected 
Events 

1 
2 

71 
63 

105.70 
28.30 

Total 134 134.00 

Chi2(1) = 58.78 
Pr>chi2 = 0.0000 

 

 
Traffic 
Count 

Observed 
Events 

Expected 
Events 

1 
2 

105 
29 

103.29 
30.71 

Total 134 134.00 

Chi2(1) = 0.13 
Pr>chi2 = 0.7233 

 

c) Log-rank test for MPE hours/visit groups. d) Log-rank test for traffic volume groups. 
 

The collectors’ site data analysis showed that the MPE variables’ impacts on the duration 

between collisions are more beneficial than other categories (i.e., all sites, arterials and collectors, 

and arterials only groups). For instance, as shown in Figure 11a, the deployed MPE hours/visit 

variable had HR = 0.65. This means the consequence of accounting for the MPE hours/visit is a 

reduction in the risk of a collision occurrence by 35%. Also, the deployed MPE visits trigger a 

reduction of 5% in collisions.   

The KM graphs results provided the same summary as previously explained for different 

categories. For example, in Figure 11c, the median survival probability (at 0.5 on Y-axis) for 

above-average MPE hours/visit locations is 265 days, compared to 34 days for the sites in the 

below-average group. Moreover, it is noticeable that the KM graph for the traffic volume clusters 

intersects at many points and yields almost the same survival probability over the year. This 

indicates that the traffic volume does not impact the survival probability for the collectors’ sites. 

In other words, the traffic volume is not a factor that affects the survival probability of collector 

roadways.  
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The log-rank tests were not significant for all groups (i.e., Pr value> 0.05 in one case). For 

instance, in Tables 14 a-c, the Pr < 0.05 for the MPE hours, visits, and hours/visit groups indicate 

that these groups have different survival probabilities. As expected, the Pr value is greater than 

0.05 for the traffic volume groups, which yields the same results as the KM graphs. This indicates 

that the null hypothesis was not rejected, and both traffic volume clusters have similar survival 

probability.     

5.1.5 High Traffic Volume Locations Only 

After grouping all sites based on roadway type to study the impact of MPE variables on different 

roadway categories, we classified the sites based on the traffic volume. From this, we compared 

the effectiveness of deployed MPE variables on two different traffic volume categories (i.e., 

above-average traffic volume sites and below-average traffic volume sites). Ten high-traffic 

volume sites experienced 133 collisions in 2019. These sites were all arterial roadways. The figures 

below explain the results: 

5.1.5.1 Cox proportional hazard model 

Table 15: The Hazard Ratio Estimates for the MPE Variables (High Traffic Volume Sites Only). 

 
 Haz. Ratio Std. Err. P>|z| [95% Conf. Interval] 
Deployment 
Hours 

0.97506 0.00286 0.000 0.96945 0.9806 
 

(a) The total number of deployed MPE hours. 
 

 Haz. Ratio Std. Err. P>|z| [95% Conf. Interval] 
Deployment 
Visits 

0.9168 0.00908 0.000 0.8991 0.9347 
 

(b) The total number of deployed MPE visits. 
 

 Haz. Ratio Std. Err. P>|z| [95% Conf. Interval] 
Hours per 
Visits 

0.4884 0.0545 0.000 0.3924 0.6078 
 

       (c) The ratio between the number of visits and hours (HpV). 
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5.1.5.2 Kaplan-Meier Graphs 

 
(a) The clustered two groups of deployed MPE hours. 

 
(b) The clustered two groups of deployed MPE visits. 
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(c) The clustered two groups of deployed MPE visits. 
Figure 13: The KM Survival Estimates for the MPE Groups (High Traffic Volume Sites Only). 
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5.1.5.3 Log-rank Equality Test 

Table 16: The Log Rank Test for Different Groups (High Traffic Volume Sites Only). 

 
Hours Observed 

Events 
Expected 
Events 

Above 
average 
Below-
average 

14 
109 

44.25 
78.75 

Total 123 123.00 

Chi2(1) = 48.42 
Pr>chi2 = 0.0000 

 

 
Visits Observed 

Events 
Expected 
Events 

Above 
average 
Below-
average 

14 
109 

44.25 
78.75 

Total 123 123.00 

Chi2(1) = 48.42 
Pr>chi2 = 0.0000 

 

a) Log-rank test for MPE hours groups. b) Log-rank test for MPE visits groups. 
 

HpV Observed 
Events 

Expected 
Events 

Above 
average 
Below-
average 

111 
12 

121.69 
1.31 

Total 123 123.00 
Chi2(1) = 92.06 

Pr>chi2 = 0.0000 
 

c) Log-rank test for MPE hours/visit groups. 
 

The procedure’s outputs for the high traffic volume sites indicated that the different MPE 

variables impacted the duration between two consequent collisions. As shown in Table 15, all the 

MPE variables significantly correlate to the time between collisions (95% confidence interval). 

Table 15c illustrates the deployed MPE hours to visits (HpV) ratio, showing a remarkable 

influence on the collision occurrence. The hazard ratio for this variable is 0.48, indicating a 52% 

reduction in the risk of a collision. Moreover, the deployed MPE hours and visits had an HR of 

0.97 and 0.91, respectively. This reflects a decrease in collision occurrence by 3% and 9% by 

implementing MPE hours and visits, respectively. These results comply with the previous 

conclusion that deploying MPE visits is more effective than deploying MPE hours. 

The KM charts’ results showed that the above-average MPE sites had a higher survival 

probability than below-average MPE sites. Figure 12a shows that when the survival probability is 

at 0.5 on Y-axis, the above-average MPE hours group is 91 days, while it is 15 days for the below-
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average group. Similarly, in Figure 12c, the survivability for the above-average MPE hours/visit 

cluster is 21 days on average; the below-average survivability is one day on average. These 

statistics demonstrate that higher MPE hours, visits, or hours/visits are linked to higher 

survivability and lower risk of collision occurrence, along with the longer durations between two 

consequent collisions. 

The equity tests were significant for all considered groups concerning the log-rank test 

results. As shown in Table 16, the Pr value was less than 0.05, which means the null hypothesis is 

rejected, and the clusters of each group have different survival probabilities. These results support 

the KM graphs by providing the same conclusion.  

5.1.6 Low Traffic Volume Locations 

There are 104 low-traffic volume sites that had a total of 450 collisions in 2019. The categories of 

these sites varied between arterials, collectors, and locals, with a balanced presence of both arterial 

and collectors’ categories. The leading cause of these collisions was following too closely, 

followed by left turn cross path and stop sign violation. Tables 17 a-c and 18 a-c and Figure 14 a-

c below illustrate the results: 
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5.1.6.1 Cox proportional hazard model 

Table 17: The Hazard Ratio Estimates for The MPE Variables (Low Traffic Volume Sites Only). 

 
 Haz. Ratio Std. Err. P>|z| [95% Conf. Interval] 
Deployme
nt Hours 

0.9918 0.00124 0.000 0.9894 0.9943 
 

(a) The total number of deployed MPE hours. 
 

 Haz. Ratio Std. Err. P>|z| [95% Conf. Interval] 
Deployme
nt Visits 

0.9726 0.0037 0.000 0.9652 0.9800 
 

(b) The total number of deployed MPE visits. 
 

 Haz. Ratio Std. Err. P>|z| [95% Conf. Interval] 
Hours per 
Visits 

0.7072 0.0244 0.000 0.6608 0.7569 
 

       (c) The ratio between the number of MPE visits and hours (HpV). 

5.1.6.2 Kaplan-Meier Graphs 

   
(a) The clustered two groups of deployed MPE hours. 
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(b) The clustered two groups of deployed MPE visits. 

 
(c) The clustered two groups of deployed MPE visits. 
Figure 14: The KM Survival Estimates for The MPE Groups (Low Traffic Volume Sites Only) 

 

  



52 
 

5.1.6.3 Log-rank Equality Test 

Table 18: The Log Rank Test for Different Groups (Low Traffic Volume Sites Only). 

 
Hours Observed 

Events 
Expected 
Events 

Above 
average 
Below-
average 

10 
440 

24.78 
425.22 

Total 450 450.00 

Chi2(1) = 9.67 
Pr>chi2 = 0.0019 

 

 
Visits Observed 

Events 
Expected 
Events 

Above 
average 
Below-
average 

10 
440 

26.11 
423.89 

Total 450 450.00 

Chi2(1) = 11.03 
Pr>chi2 = 0.0009 

 

a) Log-rank test for MPE hours groups. b) Log-rank test for MPE visits groups. 
 

HpV Observed 
Events 

Expected 
Events 

Above 
average 
Below-
average 

234 
216 

340.67 
109.33 

Total 450 450.00 
Chi2(1) = 149.95 
Pr>chi2 = 0.0000 

 

c) Log-rank test for MPE hours/visit groups. 
 

The Cox-proportional hazard models for the below-average traffic volume sites showed 

that the deployed MPE hours, visits, and HpV significantly reduce the risk of collision occurrence. 

For instance, as shown in Table 17, the ratio of deployed MPE hours to visits has the maximum 

impact on collisions with an HR = 0.7, which means a 30% reduction in the risk of collision 

occurrence by considering the MPE HpV. Moreover, the deployed MPE visits have a higher 

positive impact than MPE hours since it reduces the risk of collision occurrence by 3%.  

The clustered groups of MPE hours, visits, and HpV have different survivability for the 

KM graphs. As presented in Figure 14, the survival probability for the above-average MPE hours 

is 257 days, compared to forty-five days for the below-average group, and similar survivability for 

the deployed MPE visits groups. Furthermore, for the HpV MPE clusters, the above-average sites 

survived for 138 days on average; on the other hand, the below-average sites survived for twenty-

four days.    
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The log-rank tests were significant for all variable groups. The Pr values for MPE hours, 

visits, and HpV clusters are zero, emphasizing these groups’ different survivability. These results 

perfectly match the KM graphs’ outcome.  

5.1.7 Speeding Related Collisions Only 

The speeding-related collisions happen due to following too closely, running off the road, or 

striking a parked vehicle. There were 217 speeding-related collisions that took place in 2019. We 

considered these collisions to study the impact of deployed MPE variables on them. Tables 19 a-

c and 20 a-d and Figures 15 a-c and 16 illustrate the results: 

5.1.7.1 Cox proportional hazard model 

Table 19: The Hazard Ratio Estimates for The MPE Variables (Speeding Related Collisions 
Only). 

 
 Haz. Ratio Std. Err. P>|z| [95% Conf. Interval] 
Deployment 
Hours 

0.9929 0.0015 0.000 0.9900 0.9959 
 

(a) The total number of deployed MPE hours. 
 

 Haz. Ratio Std. Err. P>|z| [95% Conf. Interval] 
Deployment 
Visits 

0.9742 0.0050 0.000 0.9644 0.9841 
 

(b) The total number of deployed MPE visits. 
 

 Haz. Ratio Std. Err. P>|z| [95% Conf. Interval] 
Hours per 
Visits 

0.6789 0.0352 0.000 0.6131 0.7517 
 

       (c) The ratio between the number of MPE visits and hours (HpV). 
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5.1.7.2 Kaplan-Meier Graphs 

 
(a) The clustered two groups of deployed MPE hours. 

 
(b) The clustered two groups of deployed MPE visits. 
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(c) The clustered two groups of deployed MPE hours/visits. 

Figure 15: The KM Survival Estimates for The MPE Groups (Speeding Related Collisions Only). 

 
Figure 16: The KM Survival Estimates for The Clustered Traffic Groups (Speeding Related 

Collisions Only). 
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5.1.7.3 Log-rank Equality Test 

Table 20: The Log Rank Test for Different Groups (Speeding Related Collisions Only). 

 
Hours Observed 

Events 
Expected 
Events 

Above 
average 
Below-
average 

5 
212 

16.16 
200.84 

Total 217 217.00 
Chi2(1) = 9.07 

Pr>chi2 = 0.0026 
 

 
Visits Observed 

Events 
Expected 
Events 

Above 
average 
Below-
average 

5 
12 

16.16 
200.84 

Total 217 217.00 
Chi2(1) = 9.07 

Pr>chi2 = 0.0026 
 

a) Log-rank test for MPE hours groups. b) Log-rank test for MPE visits groups. 
 
HpV Observed 

Events 
Expected 
Events 

Above 
average 
Below-
average 

126 
91 

170.44 
46.56 

Total 217 217.00 
Chi2(1) = 58.60 

Pr>chi2 = 0.0000 
 

 
Traffic Count Observed 

Events 
Expected 
Events 

Above 
average 
Below-
average 

173 
44 

184.06 
32.94 

Total 217 217.00 
Chi2(1) = 4.53 

Pr>chi2 = 0.0333 
 

c) Log-rank test for MPE hours/visit groups. d) Log-rank test for traffic volume groups. 
  

These results proved that deploying a higher rate of hours to visits increases the duration between 

two consequent collisions and hence decreases the probability of collision occurrence. Comparing 

the results of all site analyses and the speeding-related collisions only shows that the deployed 

MPE is more effective on these specific collision causes. For instance, the MPE HpV’s HR for the 

speeding-related collisions is 0.67, which means a 33% reduction in the risk of collision occurrence 

by accounting for the MPE HpV ratio. On the other hand, the HR for all types of collisions 

generally is 22%. 

The KM graphs in Figures 15a and 15b showed that the average survival probability for 

above-average MPE hours or visits sites is 220 days, while it is seventeen days only for the below-

average MPE ones. This means the survivability for the sites with above-average MPE hours or 

visits is more than ten times the below-average MPE sites. For the deployed MPE hours/visit, the 

survival probability for the below-average site group is ten days, compared to forty-five days for 

the above-average MPE hours/visit sites.  
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Moreover, the log-rank tests are proof of the KM graphs results. As presented in Table 20, 

the Pr values for all clustered groups are less than 0.05, reflecting that these different clusters do 

not have the same survivability. For instance, the Pr equals 0.0026 for the site clusters of MPE 

hours and visits; thus, these results comply with the KM graphs. 

5.2 Survival Analysis Results (2018, 2017, 2016 and All years) 

This methodology was executed separately for each year (2018, 2017, 2016); then, all years were 

integrated into one study. The results of these years are attached in the appendix section. The 

results of each year and the combined years yield the same conclusion that the MPE variables have 

a considerable impact on collision occurrence, whereby there is an increase in the duration between 

two collisions and a corresponding decrease in the risk of collision occurrence. To sum up the 

results, there is a more significant positive effect from the deployed number of MPE visits than 

the number of deployed MPE hours. Moreover, the ratio between MPE hours to visits has the most 

influence on reducing the hazard of collision occurrence. The outcomes of these processes 

provided similar results to those for the 2019 analysis when applying the analysis procedure to 

different road categories and traffic volume classifications.  
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6 CONCLUSION 

The main goal of this project has been to develop survival analysis models that investigate the 

impact of deployed MPE hours, visits, and HpV on the duration between two consequent collisions 

in the City of Edmonton. The aim was to mitigate the current issue of speed violators that cause 

different types of crashes. MPE programs are considered an effective solution to restrict 

irresponsible drivers’ behaviours. Therefore, this project explored the survival probability of 

various locations exposed to different MPE hours and visits. Moreover, it detected the potential 

reduction of the risk of collision occurrence by deploying MPE hours and visits. 

 The proposed methodology consisted of two phases: preparing the provided data and 

applying the survival analysis. The output of the first step was a Microsoft Excel spreadsheet that 

contained the necessary survival data. Thus, the outcome table combined the duration between two 

consequent collisions and the corresponding number of MPE hours and visits for each duration. 

Moreover, the outcome contains collision causes, traffic count, and the first and second collision 

dates. Next, we categorized and divided the data into groups based on the MPE variables and traffic 

counts. We classified these groups d using K-means clusters and employed MATLAB and SAS 

software to execute this step. The second step was to apply the survival analysis, including Cox 

proportional hazard models, KM survival estimates, and log-rank tests. The Cox proportional 

hazard models investigated the impact of MPE hours, visits, and HpV on the duration between two 

consequent collisions. In other words, it explored the expected reduction in collision occurrence 

by deploying MPE hours and visits. We plotted the KM graphs on different MPE clusters to 

emphasize the influence of the deployed number of MPE hours, visits, and HpV. These clusters 

were classified into two groups (i.e., above average and below average) based on MPE hours, MPE 

visits, MPE HpV, and traffic count. Finally, we conducted log-rank tests to explain whether the 

clusters had the same survival probability, which we expected to comply with the KM graphs. All 

the steps were carried out on different location groups. 

 The results showed that accounting for the ratio between hours and visits has the maximum 

impact on increasing the duration between collisions and reducing the risk of collision occurrence. 

The expected reduction in the collision hazard varied between 52% and 22%, where the maximum 

reduction could be reached in high traffic volume locations, and the minimum reduction could be 

expected for all sites. In addition, the deployed MPE HpV had a better effect on collector roads 



59 
 

compared to arterial roads. We note here that the number of deployed MPE visits had a higher 

impact on increasing the duration between collisions than the number of deployed MPE hours. 

Transportation planners and authorities may wish to consider this for the future to improve the 

MPE program and provide more timing options for critical deployments. 

 We plotted the KM survival estimates for different groups of MPE hours, visits, HpV, and 

traffic volume. The graphs’ outcomes concluded that the groups of above-average MPE hours, 

MPE visits, and MPE HpV have higher survivability than the below-average ones. These results 

emphasize the importance of MPE deployment to reduce the risk of collisions occurring. 

Moreover, the KM survival graphs were carried out for traffic count clusters. The results showed 

that the above-average traffic volume locations had higher survivability than those with below-

average traffic volume, possibly because drivers tend to exceed the speed limit when the traffic 

flow is light. In addition, we carried out log-rank tests. The outputs comply with the conclusions 

drawn from KM survival estimates. Finally, we applied the same methodology to the data from 

2016 to 2019.  

We recommend exploring the impact of multi-variables in the Cox-proportional hazard 

models in further research.  
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