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EXECUTIVE SUMMARY 

This report summarizes key results from work that was conducted for the City of Edmonton 
Department of Sustainable Development. The views expressed in this report are those of the 
consultant and do not necessarily represent those of the City of Edmonton. 

Some vehicle automation technologies, such as adaptive cruise control, are already available 
on the market, while significantly more advanced technologies are being developed. Vehicles 
that can drive themselves in any situation with no human intervention may be decades away, 
but they could emerge sooner, and less advanced but still powerful technologies will emerge 
in the very near term. All of these technologies could produce significant impacts on travel 
and land use in Edmonton. 

Automation in private light-duty vehicles and taxis could make travel faster and easier, 
increase road capacity on some roads, and reduce parking demand. However, automated 
cars have the potential to also produce negative impacts, such as increased vehicle travel 
due to induced demand, increased congestion on city streets, and a tendency toward more 
spatially dispersed development. In addition, some benefits, such as increased freeway 
capacity, may manifest slowly, since they are dependent on high levels of adoption of highly 
advanced technologies. In contrast, if automation is applied to public transit buses, the 
frequency and capacity of transit could be significantly improved. This could lead to increased 
mode share, thus mitigating the tendency toward increased vehicle travel and supporting 
more spatially compact, resource-efficient development. Importantly, many of these benefits 
could begin to materialize in the near term. 

Levels of vehicle automation 

In the taxonomy of vehicle automation developed by the Society of Automotive Engineers 
(SAE), Level 1 describes systems where either steering or speed control may be automated, 
but not both simultaneously. In Level 2, the system controls both steering and speed 
simultaneously, but the human driver must continuously monitor the vehicle’s performance 
and must be available to take control with no notice. In Level 3, the driver need not monitor 
but must be available to take control within a short time when requested by the system. Level 
4 refers to a vehicle that can drive itself without any need for human intervention, but that can 
only do so in specific situations. This includes automated vehicles that may not be highly 
sophisticated but that nevertheless can operate without human intervention while in 
controlled environments. Such environments could include specified roads such as freeways, 
lanes that are dedicated exclusively for the use of automated vehicles, or private zones such 
as campuses. In Level 5, the system can drive itself in any situation without any need for a 
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human to monitor or be available to take over. Level 5 would make possible applications such 
as self-driving private vehicles and driverless taxis. 

Automation technologies: state of the art 

Vehicle automation technologies use information provided by a variety of sensors, including 
radar, LIDAR (a remote sensing technology that detects objects via reflected laser light), 
cameras, infrared cameras, ultrasound, GPS (Global Positioning System), accelerometers, 
and others. Automated vehicles can also use information provided via wireless 
communications with other equipped vehicles or entities in the environment – this is referred 
to as V2V (vehicle to vehicle), V2I (vehicle to infrastructure), or more generally as V2X (vehicle 
to vehicle, infrastructure, or other entities). 

Level 1 technologies are currently available in a number of vehicles on the market. Lane-
keeping technologies use cameras, radar, and other sensors to detect the position of a 
vehicle relative to lane markings and/or the vehicle ahead to maintain its position in the lane. 
Adaptive cruise control maintains the vehicle’s speed at a desired level while adjusting speed 
as necessary to safely follow the vehicle ahead according to distance and speed data 
provided by radar. Cooperative adaptive cruise control is a related technology that uses V2V 
to detect the movements of other vehicles; this technology has been tested but is not 
available on the market. 

Level 2 technologies, which simultaneously control steering and speed, are beginning to 
emerge onto the market. For example, Mercedes and Tesla have introduced such 
technologies into some of their vehicles. 

Several projects to develop higher levels of automation are underway. Google is developing 
automated light-duty vehicles, and is also developing a Level 4, lightweight, two-passenger 
low-speed automated vehicle that would travel at a maximum of 40 km/h. Google’s vehicles 
rely especially on a rooftop LIDAR (a sensor that scans the environment with laser light) that 
develops a detailed 3D map of the environment, which is compared against a map that was 
developed beforehand while manually driving the route. While Google’s fleet has been test-
driven over long distances, the vehicles are continuously monitored by test drivers who take 
over control when situations arise that may be beyond the capability of the automated system. 

Other projects, such as the CityMobil2 project in Europe, also aim to automate low-speed 
operation of lightweight vehicles. This approach greatly reduces the technical challenges 
involved in achieving full automation. These vehicles have been tested in cities in Italy, France, 
Greece, Finland, and other countries. Such vehicles could operate in restricted areas, such as 
university and business campuses, retirement communities, hospital sites, and pedestrian 
areas, and could provide “first and last mile” access to and from public transit routes. 
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Automation applied to transit buses can enable operation in narrow rights-of-way, precise 
docking at bus stations, bus platooning, and fully automated driving. Many of these 
applications were demonstrated as far back as 2003 by PATH (Partners for Advanced 
Transportation Technology) in California, and various forms of bus automation have been 
implemented in locations in Europe, Japan, and the US. 

Challenges in developing higher levels of automation 

In order to attain higher levels of automation, such as Level 5, several issues must be 
resolved. 

There are major technical challenges. Sensors currently do not function reliably in certain 
weather conditions, such as rain and snow. Automated systems have difficulties in 
interpreting sensed data in complex, unstructured, highly dynamic environments, which are 
common in cities. Map-based systems, such as that used by Google, can become confused 
when their reference maps have not been updated to reflect changes in the environment. It is 
also difficult for automated systems to predict the behaviour of vehicles, pedestrians, and 
other objects. Another problem is to determine how automated vehicles should drive in 
situations where human drivers rely on eye contact or otherwise communicate with other road 
users. 

A related problem is that in order to ensure public acceptance of the technologies, the 
vehicles will likely need to be capable of driving more safely than humans; to ensure this level 
of safety, extensive testing will be necessary. 

In addition, the technologies are currently expensive – for example, it has been reported that 
the LIDAR used in Google’s test vehicles costs $75,000. It is anticipated that costs of 
sensors and other components will drop substantially, though it is uncertain when and to 
what degree this will happen. 

Programming an automated vehicle also raises ethical challenges, as some driving situations 
may require choosing between alternatives that impose different levels of risk on different 
road users. 

Legal issues must be addressed. While several jurisdictions, including the province of Ontario, 
have legalized the testing of automated vehicles with human monitors on public roads, before 
the public can use Level 3, 4, or 5 vehicles, where the vehicle need not be continuously 
monitored by a human, it will be necessary to clarify the legality of the operation of such 
vehicles. 

Liability must also be clarified: if an automated system is driving, blame for a crash may be 
distributed among various parties, such as an auto manufacturer, a designer of system 
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components, or a computer programmer. The need to resolve human factors issues – such 
as ensuring that human drivers perform monitoring or backup tasks as required – could slow 
the emergence of Level 2 and 3 systems in particular. 

Security and privacy are also concerns, especially for systems equipped with V2X. Hackers 
could cause vehicles to crash or otherwise cause problems. Privacy advocates are also 
concerned about protecting the data on the movements of vehicle users. 

Timelines of emergence of higher levels of automation 

There is a general consensus that Level 3 systems will emerge by 2020 to 2025. Estimates 
regarding when Level 5 vehicles will be available on the market vary widely – some 
commentators suggest that Level 5 will emerge as early as 2017, while others contend that it 
will emerge several decades in the future. 

While it is highly uncertain when Level 5 will emerge, several factors suggest that it may 
emerge further in the future than the more optimistic estimates suggest. Most importantly, 
there are technical problems to solve, such as the challenges mentioned above. In addition, 
the level of technological advancement achieved to date is often overstated. For example, 
while it is often reported that Google’s test fleet has driven large distances in automated 
mode without having caused collisions, it is important to recognize that the testing takes 
place in favourable weather conditions and less challenging road environments, and under 
continuous human monitoring, and the frequency and nature of interventions by the test 
drivers has not been made clear. Therefore, it is not possible to make a meaningful 
assessment of the capability of their vehicles. 

Impacts on road safety 

It is uncertain what degree of safety benefits that high levels of automation would produce, 
though there is a large theoretical potential if automated systems perform with a high level of 
reliability, since human error causes 75 to 95 percent of crashes. 

Safety improvements can be achieved with less advanced forms of automation. For example, 
according to some reports, automatic emergency braking systems could reduce crashes by 
27 percent. 

The safety impacts of Level 1, 2, and 3 systems are highly uncertain, due to the novel “human 
factors” risks resulting from the sharing of responsibility for driving between human and 
machine. There is a risk that the human driver will fail to properly perform their driving, 
monitoring, or backup driver tasks. For Level 2, a driver may not monitor the system and may 
fail to take over immediately, while in Level 3, a driver may fail to safely take over control of 
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the vehicle in a timely manner when requested by the system. Therefore, it is possible that 
while these technologies might prevent some crashes, new crashes might also be caused. To 
date, there has been one known fatal crash involving a Tesla car where the Level 2 
automated system was in operation. There is insufficient data currently to conclude whether 
this particular Level 2 system improves or worsens safety. 

In the case of Level 4 vehicles where full automation is achieved by controlling the 
environment in particular, safety will depend in part on how effectively the environment is 
controlled. For example, in the case of protected lanes, safety would depend on how 
effectively potential hazards, such as unauthorized vehicles, or pedestrians and cyclists, are 
excluded from the lane. 

As Level 5 technologies do not exist yet, their safety impacts are inherently highly uncertain. 
Some early studies have attempted to compare the safety record of automated test vehicles, 
especially those of Google, with the safety record of human drivers; however, available data 
does not support any useful conclusions at this time. 

Impacts on the efficiency of use of transportation infrastructure 

An automated system capable of controlling a vehicle more precisely and with a shorter 
reaction time than a human makes it possible to safely follow a preceding vehicle at a closer 
distance, thus increasing lane capacity by 50 to 100 percent. The shorter reaction time would 
also make traffic flows more stable, reducing the shock waves that lead to “stop and go” 
traffic.  

To enable these increases in capacity, vehicles would drive in groups or “platoons” of several 
vehicles – in the range of four to twenty vehicles is commonly proposed. The vehicles in each 
platoon follow each other closely, for example, at distances of one to four metres. The 
platoons are separated from each other by larger gaps to minimize the risk of collision if a 
leading platoon were to suddenly stop. Meanwhile, the small gaps between the vehicles in 
each platoon mean that even sudden stops would produce small speed differences between 
vehicles, so any impacts would be of low severity. 

Large capacity increases would require V2V combined with automation. V2V can provide 
information on the movements of other vehicles with shorter time delays than on-board 
sensors; it can even provide information about the manoeuvres other vehicles plan to execute 
before they are executed. In addition, V2V can provide information on vehicles that are 
beyond the line of sight of on-board sensors. 
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Capacity would increase little until a large proportion of vehicles on the road are capable of 
platooning. Large capacity increases require high levels of adoption, when the proportion of 
equipped vehicles exceeds 60 to 85 percent. 

The capacity benefits of platooning can be realized while adoption levels are still low by 
enabling platooning-capable vehicles to cluster together into dedicated lanes. Unfortunately, 
such dedicated lanes suffer from a “chicken and egg” problem, where individuals are 
motivated to acquire platooning-capable technology only if they perceive a benefit, such as 
reduced travel time or reduced workload, while infrastructure providers are unlikely to provide 
dedicated lanes before a demand exists. 

Because vehicles entering into and exiting from platoons would significantly reduce lane 
capacity, capacity increases would occur mainly on freeways where entrance and exit ramps 
are widely separated. 

The capacity benefits of automation would be limited on city streets, since the complex 
movements of city traffic would diminish the capacity increases that platooning can provide.  

Platooning would be most useful for longer trips and would provide limited benefits where 
traffic flows are complex, such as on freeways with closely spaced interchanges. 

Capacity increases from platooning on freeways would attract traffic from other roads, thus 
potentially reducing congestion on arterials in some areas, but could also lead to congestion 
near freeway entrances and exits where platooning produces minimal capacity increases. 
This would limit capacity increases for the overall network.  

Platooning would provide significant benefits only to those trips that use freeways for a 
significant portion of the trip. In addition, if many vehicles take short trips on freeways, their 
frequent manoeuvring into and out of platoons will limit capacity. 

For platooning to benefit a large proportion of trips in a city, a large proportion of origins and 
destinations must be close to freeways, such as in a city where development is focused along 
freeway corridors, or with an extensive freeway network. 

Capacity increases would be limited where there is significant truck traffic – heavy trucks 
must follow at longer headways due to their poorer braking capabilities. 

Automation is not likely to result in significant increases in lateral road capacity. The potential 
gains from narrower lanes are small compared to the potential gains from shorter headways – 
while only around 11 percent of the length of the lane is used by manually driven vehicles, 
around half of the width of the lane is used. 
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Automation combined with V2X could improve traffic flow at intersections. It has been 
proposed that intersections would have no need for signals or signs; instead, cars equipped 
with V2X would be assigned time and space slots in which to move through the intersection. 
This could substantially reduce delays, though the magnitude of reduction would depend on 
high levels of adoption of V2X-equipped automated vehicles, and would also depend on the 
presence of few pedestrians or cyclists.  

Automation in transit buses can facilitate operation in narrow rights-of-way, precision docking, 
bus platooning, and full automation. These applications can increase speeds, reduce dwell 
times, increase passenger comfort, reduce labour costs, and facilitate increased capacities 
and frequencies. 

With their high steering precision, automated buses can drive safely in narrower lanes than 
human operators can, and at higher speeds. This is a useful application for bus rapid transit 
(BRT) service, since narrower busways reduce land and construction costs, especially where 
tunnels or bridges are required. 

Precise steering also allows precision docking, where buses quickly and reliably pull in very 
close to the boarding platform, thus providing easier and faster access for passengers with 
limited physical mobility, as well as for other passengers. This reduces station dwell time and 
increases schedule reliability. 

Platooning of buses would increase capacity, reduce labour costs, and enable buses to 
provide service similar to trains without the need for rail infrastructure. A bus platoon could 
operate with a driver in the lead bus and with the following buses operating without drivers, or 
an entire platoon could operate without drivers. Unlike trains, the buses could operate on the 
larger road network, enabling “dual mode” operation, where a bus could operate manually on 
uncontrolled roads for a portion of its service and join a platoon on a protected busway for 
another portion of its service. 

Full automation in buses would also enable reduced labour costs, and would also make it 
possible to provide higher frequency service with smaller vehicles. 

Automation could facilitate a shift toward significantly smaller and lighter vehicle designs, but 
such a shift is unlikely until very advanced automation is very widely adopted. It has been 
argued that crashworthy vehicle design would be unnecessary for automated vehicles 
because their crash avoidance capabilities would be superior to those of humans; vehicles 
could then be built much smaller and lighter. However, especially while some vehicles are still 
being driven by humans, small, light automated vehicles would be vulnerable in collisions with 
large and heavy vehicles; in such crashes, crashworthiness will still be necessary. 
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Automation could improve safety and thus reduce non-recurrent congestion due to crashes. 
Level 5 in particular could reduce non-recurrent congestion on all roads; however, there is 
greater uncertainty regarding the safety impacts of Level 2 and 3.  

With Level 5 vehicles, a shift in parking locations could result. Level 4 vehicles could drive 
themselves to park at remote locations: for example, a commuter could travel to work and 
then send their car back home to park. This could reduce the demand for parking in areas of 
high intensity land uses, such as downtown areas, where parking is expensive or difficult. In 
addition, remote parking could generate additional traffic. 

Driverless taxis could reduce demand for parking. The magnitude of this effect would depend 
on the proportion of trips taken by driverless taxi rather than by private light-duty vehicle, and 
on the temporal peaking in demand for driverless taxi trips. 

Some studies examining the potential impacts of driverless taxis appear to suggest that 
driverless taxis would dramatically reduce or even eliminate the need for transit provided by 
vehicles with high passenger capacities; however, when the assumptions in the models used 
in these studies are critically assessed, these studies are more reasonably interpreted as 
indicating that driverless taxis could supersede buses and trains where there is substantial 
unused road capacity. For example, some models assume that roads in the network have 
large amounts of unused capacity at peak travel periods, and others assume that automation 
would hugely increase capacities for all roads in the network, to double or triple current levels. 
Based on these points, it is more likely that driverless taxis could provide useful service in 
areas of lower population density and during periods of lighter travel, whether serving 
complete trips or feeding into bus and train networks. 

Environmental impacts of automation 

Automation, especially when combined with V2V, could enable smoother, more efficient 
driving, with smoother speed profiles. Platooning could improve aerodynamic efficiency, 
especially for heavy-duty vehicles such as trucks and buses, which could benefit from 
significant energy savings. In addition, if vehicles become lighter and smaller, energy 
consumption would be reduced. This would also facilitate a shift to electric power. 

Adoption 

For both private vehicle owners and fleet owners, the prospect for automation to reduce or 
eliminate driving labour would be a significant attraction. Automation would reduce driving 
stresses, freeing up the traveler’s time to perform other activities, and reducing labour costs 
for fleet owners. Fully automated vehicles could allow for greater independent mobility for 
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those less able or unable to drive, such as elderly people, children and adolescents, and 
people with reduced physical mobility. 

Though it is not certain how rapidly automated vehicles will be adopted, simple models based 
on Edmonton vehicle statistics suggest that if adoption is extremely rapid, Level 5 light-duty 
vehicles would make up a large majority of the overall fleet of light-duty vehicles on the road 
within 15 to 20 years after their emergence onto the market; while if the pace of adoption is 
more moderate, it could take 30 years or more for Level 5 vehicles to become a large majority 
of the overall light-duty fleet on the roads. These points are important to consider, since many 
of the impacts of automated light-duty vehicles would only become significant at higher levels 
of diffusion. 

Level 5 vehicles could be rapidly adopted by taxi fleet owners, especially to cut labour costs. 
This would enable low taxi fares – perhaps a third of present levels, according to one estimate 
– increasing demand for travel by driverless taxi and stimulating more rapid adoption. 
Adoption could also be more rapid in taxi fleets than for private individuals because fleet 
owners could leverage economies of scale and purchase large numbers of vehicles at lower 
costs. Adoption in taxi fleets could also be accelerated because taxis are more intensively 
used than private vehicles, so fleets are refreshed more rapidly than the general fleet of 
vehicles owned by private individuals. 

Driverless taxis could provide convenient, comfortable, private travel, with lower fares than 
today, thanks to the elimination of labour costs for human drivers. This would reduce 
incentives for people to own their own private vehicles. In addition, since each driverless taxi 
would provide many trips to many individuals over the day, a relatively small fleet could serve 
a population, and parking demand would also drop. However, studies have generally 
suggested that widespread use of automated taxis could result in large increases in vehicle 
kilometres traveled, particularly due to empty taxis traveling from one passenger to the next. 
In general, when road capacity limits are taken into account, driverless taxis would be most 
useful in areas of lower population density, while higher passenger-capacity vehicles like 
buses and trains will still be needed in areas with dense spatio-temporal clustering of trips. 

Automation could provide substantial labour and other operating cost savings for bus transit 
fleet operators, since buses are used intensively and have high operating costs. Because the 
absolute cost of automation technologies would be similar for light-duty vehicles and buses, 
the technologies would make up a smaller fraction of the total vehicle cost for buses. In 
addition, buses are more intensively used, so the cost would be amortized more quickly. Fleet 
owners could also benefit from economies of scale by purchasing numerous vehicles at 
reduced costs. 

Lower levels of automation are more likely to be useful for buses than for private vehicles. In 
controlled environments such as protected lanes, less advanced automated systems can 
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drive with reduced need, or no need, for human intervention. Since bus networks occupy a 
small fraction of the total road network, automated buses could derive large benefits by using 
a network of protected lanes that similarly occupy a small fraction of the total road network, in 
contrast with private vehicles, which would generally derive smaller benefits from a limited 
network. 

Travel and land use impacts 

Due to the effects described above, vehicle automation will tend to result in increased travel 
and dispersed development, unless appropriate policy measures are taken. 

While automation would improve road capacity, the surplus capacity would be taken up in the 
long run by induced demand. 

Users of automated vehicles, especially Level 5 vehicles, will benefit from reduced cost of 
travel time per unit time. In addition, some users of automated vehicles may benefit from 
reduced delays. The resulting reduction in generalized travel cost for these individuals will 
induce some drivers to change their routes, especially to freeways from arterials and other 
roads; it would attract some users of other modes, such as transit, to travel by car; it would 
attract some drivers to travel during peak rather than off-peak times; it would encourage 
drivers to take longer trips; it would generate new freeway trips and reduce incentives for trip 
chaining; and car ownership would be encouraged – both automated and non-automated – 
which in turn would encourage more car trips. 

Automation in private vehicles would tend to result in mode shifts to private vehicles, mostly 
from longer public transit trips. Driverless taxis would shift trips away from transit and private 
vehicles, if fares drop sufficiently.  

Partial automation, platooning, or full automation, would enable increases in capacity and/or 
frequency with minimal increases, or even decreases in labour costs. Improvements in transit 
service enabled by automation would support increased ridership, especially for trips 
originating or ending in or near heavily travelled corridors, where transit service is most likely 
to be sufficiently frequent and rapid to compete with other modes, especially if dedicated 
busways are provided. 

Drivers of Level 2 and 3 vehicles would tend to use freeways or highways more often, 
especially where dedicated lanes for automated vehicles are provided. 

Travelers in automated vehicles would shift some trips to peak periods, even where delays 
are not reduced, due to the reduced cost of travel time per unit time. Where delays are 
reduced, travelers in both automated and non-automated vehicles would travel more during 
peak periods. 
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Vehicle automation would tend to generate longer trips, especially for trips that make use of 
freeways or highways. The increase in trip lengths would be largest for Level 4 vehicles, but 
could also be large for Level 3 vehicles, especially where these vehicles make trips that make 
extensive use of freeways and dedicated lanes. Automation in transit could also result in the 
generation of longer trips, where service improvements reduce the generalized cost of travel. 

A reduction in the generalized cost of travel would lead to the generation of new trips, and 
would also lead to more unchained trips. 

Level 5 would enable remote parking and lead to more trips to destinations where parking is 
expensive or in short supply. “Cruising for parking” would diminish, but trips to remote 
parking locations would be generated. 

Driverless taxis would reduce the need for parking, and would generate increased vehicle 
travel as taxis drive from one passenger to the next. 

Many individuals would be attracted to purchase automated vehicles, especially with Level 4. 
However, as driverless taxis become common and as fares decrease, some individuals would 
opt to use taxis rather than own vehicles. 

Users of privately owned automated vehicles and driverless taxis would experience incentives 
to choose residential locations that are more distant from their jobs or other activities, and 
that are particularly accessible by freeway. Where dedicated lanes are provided, users of 
automated vehicles would experience an incentive to choose residential locations that are 
more accessible by dedicated lanes. Users of improved transit services would be incentivized 
to choose residential locations accessible by these services, which would likely be in heavily 
travelled corridors. Automation would provide firms an incentive to choose locations more 
distant from their customers, employees, or other firms they do business with. 

With Level 2 and 3, parking demand would tend to increase. With Level 5 automation, 
driverless taxis could reduce parking demand, thus freeing up land previously used for 
parking, while remote parking of private vehicles would tend to lead to a shift of parking from 
intensely developed areas to less central areas. These changes would allow for infill 
development, which could encourage more short trips taken by walking and cycling. However, 
remote parking would also result in land in other neighbourhoods being consumed by new 
parking facilities. 

Once platooning-capable automation is widely adopted, road capacity could increase 
significantly. This could allow for the removal of freeway lanes. The land could be used for 
busways or for other modes, or could be used for greenspace or development. 
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Recommendations 

The following preliminary recommendations are proposed. 

PUBLIC TRANSIT 

• Deploy lane-keeping and precision docking in BRT buses. These applications can at first 
be used to improve service in partially automated buses where human drivers monitor 
operation 

• Implement protected busways on freeways. These busways can enable fully automated 
operation, even before the emergence of Level 5 technology 

• Implement bus platooning technology to support increased capacity with minimal labour 
costs 

• Consider the use of smaller automated buses and shorter platforms for BRT buses 
• Consider automated BRT as an alternative to LRT, in general, and especially where dual-

mode operation could provide superior service 
• Deploy low-speed Level 4 vehicles in lower-density areas 
• Provide demand-responsive service in low-density areas with smaller automated buses 
• Reduce bus service and encourage use of driverless taxis as transit feeders 
• Price transit appropriately to maintain mode share 
• Price driverless taxi trips appropriately to incentivize their use as transit feeders 
• Provide drop-off/pick-up zones to facilitate transfers to and from first/last mile services 

SUPPORT WALKING AND CYCLING IN DENSE AREAS AND NEAR TRANSIT STATIONS 

• Provide suitable infrastructure to support walking and cycling, especially in dense areas 
and near transit stations 

• Deploy and price low-speed vehicles and taxis strategically to minimize reduction of active 
transportation mode share 

ROADS 

• Consider reducing speed limits on local streets 
• Consider dedicated lanes for automated light-duty vehicles when adoption levels are 

sufficiently high 
• Implement lane conversions/road diets where opportunities exist 
• Price roads to mitigate increases in VKT and congestion on streets 
• Incentivize adoption of platooning-capable technology with lower road pricing 
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PARKING 

• Price parking to mitigate demand increases that would result from increased travel with 
Level 2 and 3 automation 

• When Level 5 emerges and adoption levels become significant, price parking 
appropriately in areas used for remote parking to limit traffic associated with remote 
parking and to encourage transit or driverless taxi use 

• Reduce minimum parking requirements and convert park-and-rides 

LAND USE 

• Internalize the costs of infrastructure and services, via development charges, for example, 
to discourage excessively dispersed development and to minimize the associated external 
costs of transportation and costs of other infrastructure and services 

• Support development near BRT and other higher-order transit services 
• Encourage the redevelopment of land formerly used for parking in intensely developed 

areas, such as in downtown areas, or at park-and-ride facilities at transit stations 
• Convert roadside parking spaces to pedestrian and cycle facilities or greenspace 

PILOT DEPLOYMENTS 

• Prior to any large-scale deployments of automation in public transit, deploy existing Level 
1, 2, and/or 4 automation in small-scale pilot projects. Deployments could include Level 4 
low-speed vehicles serving short routes in areas such as university campuses, business 
parks, airports, and multi-use paths, ideally where the service would not compete 
inappropriately with active modes of transportation; deployments could also include Level 
1 and 2 technology in BRT with protected busways 

NEXT STEPS 

• Conduct focused research on priority areas, including modeling of travel and land use 
impacts of various forms of vehicle automation, planning pilot deployments of automated 
vehicles, conducting a feasibility study of broader deployments of automation in bus 
transit, reviewing labour issues related to vehicle automation, and studying issues related 
to vehicle automation and goods movement in Edmonton 

• Create automated vehicles issues working group with internal and external stakeholders 
• Develop comprehensive vision and strategy to guide city’s approach to automated 

vehicles 
• Develop strategy to educate Edmontonians about automated vehicles and to 

communicate on the City’s related initiatives 
• Expand, refine, and update the analysis provided in this brief report on a frequent and 

regular basis to inform optimal policy approaches  
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1. Introduction 

This report summarizes key results from work that was conducted for the City of Edmonton 
Department of Sustainable Development. The views expressed in this report are those of the 
consultant and do not necessarily represent those of the City of Edmonton. 

As progressively more advanced vehicle automation technologies continue to emerge, they 
will produce significant impacts on urban mobility and land use. In order for Edmonton to 
effectively plan to maximize the benefits and minimize the negative impacts of vehicle 
automation, it is necessary to have a sound understanding of the technologies, their 
capabilities and limitations, their potential applications, their likely timelines of emergence and 
adoption, and the range of potential impacts in the near term to long term. This report 
provides an overview of key issues related to the travel and land use impacts of automated 
vehicles that the City of Edmonton, and the Department of Sustainable Development in 
particular, should consider when planning for the future. 

Recently, there has been increasing interest in and speculation on the benefits that fully 
automated vehicles could bring; however, critical analysis is needed to support a well-
informed understanding of the range of potential impacts. In particular, it is important to 
better understand at what date various forms of automation are likely to emerge, the scale of 
benefits they are likely to bring, the negative impacts they could create, and the impacts that 
would arise while vehicle automation is in the earlier stages of development and adoption. 
This latter point is critical, since this transition period could be lengthy. In addition, it is 
important to consider the potential for application of advanced automation to buses in public 
transit. This report provides a critical overview of issues relevant to the future impacts of 
automated vehicles. The report also provides preliminary recommendations on appropriate 
policy approaches to maximize benefits and minimize negative impacts in Edmonton. The 
report can be considered as a first step toward Edmonton positioning itself as a leader in 
preparing for emerging automation technologies and strategically exploiting them. 

A range of driver assistance technologies, such as lane-keeping assist and adaptive cruise 
control, are entering the automotive market, and more advanced technologies, including 
vehicles capable of driving themselves without the intervention of a human driver, are being 
developed. Many observers anticipate the widespread adoption of such highly advanced 
technologies in the coming years and decades. This report investigates when various vehicle 
automation technologies are likely to emerge onto the market, how rapidly they may be 
adopted, how they could affect the ease of travel, how they could affect the efficiency with 
which roads and parking infrastructure are used, and how they are likely to affect urban travel 
and land use patterns. In brief, this report finds that automated vehicles could significantly 
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alter travel and land use patterns in Edmonton. Automation in private light-duty vehicles, taxis, 
and car-share vehicles could result in benefits such as increased capacities on some roads 
and easier motor vehicle travel. However, there could also be negative impacts, such as 
increased congestion on city streets, increased vehicle travel, and an increased tendency 
toward dispersed development. In addition, road capacity improvements from automated 
light-duty vehicles may be slow to emerge, since they are dependent on high levels of 
adoption and high levels of automation. In contrast, if public transit buses are automated, 
transit service could be improved, thus mitigating increases in vehicle travel, road congestion, 
and inefficient dispersed urban development. 

The key questions that will be answered in this report are: 

• How are road vehicle automation technologies likely to impact passenger travel and land 
use in Edmonton in the coming decades? 

• When are advanced vehicle automation technologies likely to emerge onto the market? 
• How are automated vehicles likely to affect the efficiency with which roads and parking 

infrastructure are used? 
• How are vehicle automation technologies likely to affect the ease of travel by motor 

vehicle?  
• How will the effects of automation on ease of travel and efficiency of infrastructure use 

impact travel and land use patterns? 
• What travel and land use policies would maximize the benefits and minimize the negative 

impacts of vehicle automation? 

This report focuses on examining the impacts of road vehicle automation on passenger travel 
and land use. Other relevant issues were not within the scope of the current project; these 
include the impacts of automation on goods movement, environmental impacts, social equity 
impacts, labour impacts, and the impact on intercity travel. 

Categories of vehicle automation and relevant terms are explained in Section 2. The various 
technologies that are on the market and that are in development are reviewed in Section 3. 
Likely timelines of emergence and adoption of the technologies are discussed in Section 4. 
Section 5 provides a discussion of the impacts of automation on safety. Section 6 explains 
how automation can affect the efficiency with which road and parking infrastructure is used. 
In Section 7, the potential environmental impacts are briefly addressed. In Section 8, adoption 
rates are discussed. In Section 9, the likely travel and land use impacts of automation are 
examined. In Section 10, recent, ongoing, and planned activities relating to vehicle 
automation technologies in selected cities are reviewed. In Section 11, a number of 
preliminary policy recommendations are proposed. In a supplementary section at the end of 
the document, a brief discussion of existing shared mobility modes, with a focus on 
ridesourcing and carsharing, is provided.  
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2. Terms and taxonomy 

In this section, key terms and concepts are clarified and taxonomies of vehicle automation 
technologies are reviewed. 

2.1 “Automated” vs. “autonomous” 

The term “autonomous” has been commonly used in discussions of vehicle automation 
technologies, and has also been used in legislation and regulation. However, the term 
“autonomous” is ambiguous and is often used in two different senses in discussions of 
vehicle technologies (Smith, 2012a). “Autonomous” is sometimes used in a first sense, to 
describe a vehicle that can drive itself with no need – or reduced need – for intervention from 
a human driver. The vehicle possesses sufficient intelligence to analyze the information it 
collects regarding the environment and then plan and execute manoeuvres and thus, drive 
itself, at least in certain situations, with little or no intervention from a human driver. The 
vehicle is considered self-sufficient, or autonomous, in its intelligence. “Autonomous” is also 
used in a second sense, to describe a vehicle that is not in wireless communication with other 
vehicles or other entities – it relies only on the information provided by its on-board sensors. 
The vehicle is considered self-sufficient, or autonomous, in its sensing of the environment. 

The term “automated” avoids this ambiguity. It refers particularly to the capability of a vehicle 
to drive itself. An automated vehicle may or may not be in communication with other vehicles 
or devices. Experts such as the SAE (the Society of Automotive Engineers) specifically 
recommend “automated” and deprecate “autonomous” (SAE On-Road Automated Vehicle 
Standards Committee and others, 2014). In this report, the term “automated” is used 
accordingly. 

2.2 Automation vs. vehicle communication technologies 

Though vehicle automation technologies are sometimes conflated with vehicle 
communications technologies, they are distinct (Shladover, 2009a). Vehicle communications 
technologies provide information that can be used either by a human driver or by an 
automated system. An automated vehicle may or may not be capable of communicating 
wirelessly with other vehicles or entities, and similarly, a non-automated vehicle may or may 
not be capable of communicating wirelessly. 
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2.3 Vehicle communication technologies 

Vehicle communication technologies – referred to as V2V (vehicle to vehicle communication), 
V2I (vehicle to infrastructure), or V2X (vehicle to vehicle or to infrastructure or any other 
equipped entity, including cyclists and so on) – can provide valuable information about the 
driving environment, much of which on-board sensors are unable to detect. For example, 
while most sensors can only detect objects within their line of sight, a communicating vehicle 
can receive information from vehicles or infrastructure obstructed by hills, curves, other 
vehicles, and so on. 

 

Figure 1. Conceptualization of V2V and V2I communications. Image source: Traffic Technology Today 

 

2.4 Taxonomies of automation 

A number of taxonomies of vehicle automation have been developed to distinguish different 
technologies (e.g, see Gasser and Westhoff, 2012). The two most well-known are those 



Planning for automated vehicles in Edmonton – Final report 

 
5 

Antonio Loro Consulting Inc. – 10 October 2016 

developed by NHTSA (the US National Highway Traffic Safety Administration) and the SAE 
(the Society of Automobile Engineers). 

NHTSA TAXONOMY OF VEHICLE AUTOMATION 

NHTSA categorizes four levels of vehicle automation, in addition to a base level of no 
automation (Maddox, 2013; Medford, 2012; National Highway Traffic Safety Administration, 
2013). The taxonomy is only briefly described here, as the taxonomy developed by the SAE is 
preferred. 

Level 0 describes non-automated systems. Level 1 describes systems where either steering 
or speed control may be automated, but not both simultaneously. In Level 2, the system 
controls both steering and speed simultaneously, but the human driver must continuously 
monitor the vehicle’s performance and must be available to take control with no notice. In 
Level 3, the driver need not monitor but must be available to take control within a short time 
when requested by the system. In Level 4, the system can drive itself in any situation without 
any need for a human to monitor or be available to take over. 

SAE TAXONOMY OF VEHICLE AUTOMATION 

The Society of Automotive Engineers (SAE) has developed a more comprehensive and 
precise taxonomy of vehicle automation (SAE, 2013; Shladover et al., 2013). The SAE 
categorizes automation in levels from 0 to 5. Levels 0 through 3 of the SAE taxonomy 
correspond closely with Levels 0 through 3 of the NHTSA taxonomy. Level 5 of the SAE 
taxonomy corresponds with Level 4 of the NHTSA taxonomy, where the vehicle can drive 
itself in any situation with no need for any human intervention. In addition, the SAE taxonomy 
introduces a distinct new category: Level 4 refers to a vehicle that can drive itself without any 
need for human intervention, but that can only do so in specific situations. This includes 
automated vehicles with relatively low levels of capability but that nevertheless can operate 
without human intervention while in controlled environments. Such environments could 
include specified roads such as freeways, lanes that are dedicated exclusively for the use of 
automated vehicles, or private zones such as campuses. In this report, the SAE taxonomy is 
used. 
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Figure 2. Summary of SAE taxonomy of vehicle automation. (SAE International, 2014) 

 

Level 0: Non-automated 

The human driver performs all driving tasks. Level 0 captures technologies that simply provide 
warnings and other information to a human driver to act on. 

Level 1: Assisted 

Either longitudinal or lateral control, that is, either steering or speed, is automated, but not 
both simultaneously. The human driver continually monitors the system’s driving performance 
and must be available to intervene with no notice. The system can operate only in specific 
“driving modes”, which are specific situations, such as cruising at speed on a freeway, or 
driving at low speeds in traffic jams. 
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Level 2: Partial automation 

Steering and acceleration/deceleration are automated. The human driver must continuously 
monitor the system’s driving performance and must be available to intervene with no notice. 
The system can operate only in specific situations. 

Level 3: Conditional Automation 

The vehicle performs all driving tasks. The human driver need not monitor the system’s 
driving performance, but must be available to intervene, with some advance notice, within a 
certain transition time, if requested by the system. The system can operate only in specific 
situations. 

Level 4: High Automation 

Level 4 is called “high automation” but also encompasses fully automated operation in 
restricted conditions. The vehicle performs all driving tasks. The human driver need not 
monitor the system’s driving performance, but may be requested to intervene; however, if the 
driver fails to intervene, the system can move itself to a safe location, pulled over to the side, 
for example. The system can operate only in specific situations. 

Level 5: Full Automation 

The vehicle performs all driving tasks. The human driver need not monitor the system’s 
driving performance, nor will the driver be requested to intervene. The vehicle can drive itself 
in any situation without any involvement from a human driver. 

LEVEL 4: FULLY AUTOMATED OPERATION IN LIMITED RISK CONDITIONS 

Level 4 includes vehicles that, despite lacking the more advanced capabilities of Level 5 
vehicles, can nevertheless drive themselves without any need for intervention from a human 
driver, provided risk is limited in some way. 

Limiting risk reduces the technical challenges involved in achieving full automation. For 
example, if a hazardous situation emerges suddenly when driving at high speed, a vehicle 
may need to quickly plan and execute a complex series of evasive manoeuvres. At lower 
speeds, simpler manoeuvres, including simple stops, are more likely to suffice, and more time 
is available for the system to plan appropriate actions. In addition, while stopping in mid-lane 
on a regular road would obstruct traffic, this behaviour is less problematic in some of the 
areas where the use of Level 4 vehicles is contemplated. Finally, if a collision does occur, 
there is a reduced potential for injury to occupants and other road users at low speed. 
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Risk can be limited by controlling the environment or driving in a risk-averse fashion. 

Controlled environments that can facilitate fully automated operation include: 

• specified roads such as freeways, or certain rural highways 
• lanes isolated by medians, vegetation, concrete barriers, or fences 
• roads where pavement conditions, lane markings, signage, and other features meet a 

high standard 
• private zones such as campuses 
• parking facilities 
• controlled areas with low-speed automated vehicles only – low speed shuttles 

Driving in a risk-averse fashion includes:  

• driving at low speed 
• slowing down or pulling over in risky situations 
• allowing larger following gaps, etc. 

Level 4 vehicles are not necessarily more advanced than Level 3 vehicles. The key point here 
is that full automation can be facilitated by limiting the difficulty of the driving task. 

 

Figure 3. Example of an exclusive protected roadway used in a pilot deployment of Level 4 low-speed 
vehicles in Vantaa, Finland. Image source: CityMobil2. 
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3. Current and future vehicle 
automation technologies 

3.1 Current vehicle automation technologies 

A number of vehicle automation technologies are already available on the market. Examples 
of these are discussed below. 

LEVEL 0 

Examples of technologies that provide information or warnings to the driver include collision 
warning, lane departure warning, and blind spot monitoring (Bishop, 2005). Such 
technologies are offered by numerous manufacturers. These are not automation technologies 
– control of the vehicle is left up to the human driver. 

ACTIVE SAFETY TECHNOLOGIES 

Several manufacturers offer active safety technologies. These automated systems are not 
included in the SAE taxonomy – the SAE calls them “momentary intervention” technologies, 
since they only become active in emergency situations. These include collision avoidance 
technologies, such as automatic emergency braking. For example, Volvo’s Pedestrian 
Detection technology uses radar to detect pedestrians. The driver is first given a warning, and 
if the driver does not react, the vehicle automatically brakes. Collisions can be avoided at 
speeds up to 35 km/h; at higher speeds, the technology reduces the severity of impact (Volvo, 
2012). Mercedes, Lexus, and other manufacturers also offer collision avoidance technologies 
(Jaynes, 2013). 

LEVEL 1 

Level 1 technologies are widely available. 

Adaptive cruise control (ACC), like regular cruise control, maintains the vehicle’s speed at a 
desired level, but also uses radar or other sensors to detect the vehicle immediately in front; 
speed is automatically adjusted to follow at a safe distance (Baskar et al., 2011). ACC 
systems are available from many manufacturers, including Toyota, Nissan, Ford, BMW, and 
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Mercedes-Benz. Basic ACC technologies are generally capable of operating only at highway 
speeds, since low-speed driving situations are generally more complex and require a higher 
level of system intelligence to decide whether the vehicle should change speed or stop. More 
advanced low-speed ACC technologies have been developed that can control the speed of a 
vehicle at lower speeds and in congested stop-and-go traffic (van Driel, 2007; Hounsell et al., 
2009; Volvo, 2012). Manufacturers such as Nissan, Toyota, and others offer this type of low-
speed ACC. 

Cooperative adaptive cruise control (CACC) is a related technology, where rather than using 
on-board sensors alone to detect the immediately preceding vehicle, V2V is used to detect 
the movements of preceding vehicles. This technology has been tested but is not available on 
the market. 

Lane-keeping technologies use cameras, radar, and other sensors to detect the position of a 
vehicle relative to lane markings and/or the vehicle ahead; steering is adjusted to keep the 
vehicle in the lane. These technologies generally provide assistance to the driver rather than 
providing full control. For example, if the vehicle is drifting out of position, Volvo’s Lane 
Keeping Aid “applies gentle steering wheel torque to help the driver steer back onto the 
intended course”, and if the vehicle ends up leaving the lane, the driver is warned via a 
vibration in the steering wheel (Volvo, 2012). With the Steering Assist feature in Mercedes 
vehicles, if the driver is not holding the steering wheel, the driver is warned and then the 
Steering Assist function is deactivated (Vijayenthiran, 2012). 

Automated steering control has also been implemented in buses, with some technologies 
based on optical sensing, and others based on other kinds of sensing, such as sensing of 
magnets embedded in the roadway. For example, a BRT system in Las Vegas used optical 
guidance to facilitate precise docking at bus platforms (Hardy, 2005), and a system piloted on 
a BRT route in Eugene, Oregon from 2013 to 2015 used magnetic guidance (Huang and Tan, 
2016). 

A number of manufacturers, such as Volkswagen, Volvo, Lexus, BMW, and Ford, have 
developed technologies to assist drivers in parking. Volvo’s Park Assist Pilot aids parallel 
parking by controlling the vehicle’s steering while instructing the driver to control the vehicle’s 
speed. Ford and Toyota’s automated parking technologies similarly leave brake and throttle 
control to the driver. 
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LEVEL 2 

Level 2 technologies, which simultaneously control steering and speed, have emerged onto 
the market. Mercedes was the first to offer such a technology, in their S-Class vehicles. 
Mercedes’ system provides a warning to the driver and then deactivates itself if the driver 
removes their hands from the steering wheel for more than a few seconds. Tesla also recently 
introduced Level 2 functionality (Ross, 2015). Other manufacturers, such as BMW, Audi, 
Volvo, Volkswagen, and Cadillac, are developing such technologies. 

Similar technologies have been tested in buses. As far back as 2003, PATH (Partners for 
Advanced Transportation Technology) in California demonstrated automated bus driving while 
a driver monitored operation (Shladover, 2003). The bus guidance system used magnetic 
sensors to detect magnets embedded in the road. Recently, in 2015, the Chinese bus 
manufacturer Yutong demonstrated Level 2 driving over a trip of approximately 30 km. The 
vehicle reportedly “drove the entire route in regular traffic without human assistance”, and 
reached “a top speed of 68 km/h, passed 26 traffic lights and was able to change lanes 
without any problem” (Crowe, 2015). 

 

 

Figure 4. Automated bus platooning. Image source: California PATH 
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In 2016, Mercedes­Benz tested their “CityPilot” automated bus technology over a BRT route 
approximately 20 km in length that links Amsterdam’s Schiphol airport with the town of 
Haarlem. The bus has a top speed of 70 km/h, and is equipped to communicate with 
infrastructure such as traffic signals (Vincent, 2016)(Thomas). 

 

 

Figure 5. Mercedes-Benz automated bus. Image source: AUTOSEITUNG 

 

LEVEL 4 

Level 3 vehicles are not yet available, but some Level 4 vehicles are – as discussed above, 
Level 4 technology is not necessarily more advanced than Level 3, since Level 4 includes 
vehicles that can operate without a human driver, but only in specific conditions. 

Several groups are developing low-speed, relatively lightweight, automated, electric vehicles. 
In 2014, the French company Induct began selling the Navia, an eight-passenger shuttle with 
a maximum speed of 20 km/h, and no steering wheel, for $250,000 (Associated Press, 2014). 
These shuttles have been tested in Singapore on a 2 km route between a university and a 
business park (Sunderland, 2013). Newer versions of these vehicles, branded as Navya Arma, 
carry up to 15 passengers. Arma vehicles are being tested in other locations, such as Lyon, 
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France, where they are providing free service along a 1.3 km, 10-minute route on public 
roads (Connexion, 2016). 

The CityMobil2 project in Europe has been developing small vehicles that carry between 4 
and 20 passengers, sometimes referred to as cybercars, to operate in fully automated mode 
at low speeds in uncontrolled environments and at higher speeds in more protected 
environments (CityMobil2, 2013). These vehicles are similar to PRT (personal rapid transit) 
vehicles, such as those in operation at London’s Heathrow airport, but do not require 
dedicated guideways (Parent and Fortelle, 2005). Examples of vehicles tested in this project 
included two 12-passenger buses, limited to 10 km/h, developed by Robosoft, tested on a 
1.3 km route through a seaside pedestrian route in Oristano, Italy, in 2014 (CityMobil2, 2014); 
and six 10-passenger minibuses developed by EasyMile, tested in Vantaa, Finland, in 2015, 
connecting a railway station with exhibition grounds a kilometer away, at a maximum speed 
of 15 km/h (CityMobil2, 2015). In tests that took place in Helsinki in 2016, the vehicles drove 
in mixed traffic, at approximately 11 km/h (Yle, 2016)(Ross, 2016a). EasyMile shuttle buses 
were also tested in Lausanne, Switzerland, connecting a metro station with different areas of 
a nearby university campus over a 2.3 km route (letemps.ch, 2015). These vehicles were also 
tested in 2015 in the Greek city of Trikala on a 2.4 km route in the centre of the city 
(Associated Press, 2015), and have also been tested in other cities, such as La Rochelle, 
France (Genet, 2014). Similar vehicles transported members of the public in a test along a 
one­mile path inside a Singapore park (Hamblen, 2016). 11-passenger shuttle buses are also 
undergoing testing in Sion, Switzerland, over a 1.5 km route, at a maximum speed of 20 
km/h. An on-board attendant monitors performance (Hulm, 2016). Auro Robotics has also 
tested a five-passenger automated shuttle on the campuses of Santa Clara University and 
California State University Sacramento (Coren, 2016). 

The company Local Motors has developed a 12-passenger shuttle bus called “Olli” with a 
maximum speed of approximately 20 km/h (Miller, 2016). Reportedly, 30 percent of the bus is 
produced using a 3D printer (Rabb, 2016). They are undergoing testing in the Washington, 
D.C. area in 2016 (Murphy, 2016b), and will be tested soon in Las Vegas and in Miami­Dade 
County (Rothberg, 2016), and on public roads in Vesthimmerland, Denmark, in September 
(Copenhagen Post, 2016). 
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Figure 6. Olli automated shuttle. Image source: Computer World 

Another small, light, low-speed automated vehicle is known as the Lutz Pathfinder. Up to 
around 40 of these electric-powered two-passenger pods have been undergoing early stages 
of testing, and will soon be tested further along pedestrian pathways in the UK town of Milton 
Keynes, connecting a train station to a shopping centre about a mile away (BBC.com, 
2015)(OneMK, 2016) 

Google is also developing a low-speed automated vehicle. Since early 2014, they have been 
developing a small two-passenger self-driving vehicle with a maximum speed of 40 km/h 
(Urmson, 2014). Such low-speed automated vehicles could provide service in retirement 
communities and industrial and university campuses, resorts, military bases, amusement 
parks, and so on, or, on speed-restricted roads in lower-density neighbourhoods, they could 
act as feeders for public transit routes, helping to address the “first and last mile” problem. 
For example, in Wagenigen, the Netherlands, modified EasyMile minibuses known as 
WEpods may begin serving a fixed route between a university and a nearby inter-city railway 
station in 2016, at speeds up to 25 km/h (autoworldnews.com, 2015). While they will operate 
on public roads, they will not operate in peak traffic periods, in poor weather, or at night, and 
will be monitored remotely from a control room, as well as by an on-board steward 
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(CityMobil2, 2016a). In the first test run in early 2016, speed was limited to 8 km/h (Hsu, 
2016a). 

 

 

Figure 7. Low-speed automated vehicle from Google. Image source: Google 

Level 4 also includes conventional vehicles that can operate at higher speeds without human 
oversight, but only when in appropriate situations. Volvo is planning to test such technology 
on public roads in the DriveMe program beginning in 2017. 100 volunteers in Gothenburg, 
Sweden, and London will test automated Volvo XC90s (Muoio, 2016)(Volvo, 2016)(Danielle 
Muoio, 2016). The tests will be restricted to select roads that have been mapped in 3D. If 
weather conditions become unfavourable, drivers will be prompted to take control. If the 
driver fails to do so, or if there is a malfunction in the automated system, the car will bring 
itself to a stop on specially designed turnouts (McGehee et al., 2016). 
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Figure 8. Navya Arma low-speed automated vehicle. Image source: www.20minutes.fr  

Various auto manufacturers are also developing automated valet parking, where the driver 
exits the vehicle and the vehicle drives itself at low speed in a risk-averse fashion to a parking 
space. Tesla recently introduced a “Summon” feature that enables car owners to direct their 
unoccupied vehicles to enter and exit a garage and park (Loizos, 2016). 

Automated mining trucks, such as those in use at the West Angelas mine in Australia, are 
another example of Level 4 (Latimer, 2015). These trucks operate in a highly risk-averse 
fashion at low speeds in environments with little traffic. If the obstacle detection system 
detects an obstacle, such as a human, the truck simply slows down and then stops if the 
obstacle is still there. Suncor Energy may begin operating similar vehicles soon in oil sands 
mining in Alberta (TTnews.com, 2015). 

3.2 Future automation technologies 

LEVEL 3 

Several projects to develop Level 3 automation are underway. Several manufacturers, such 
as GM, Mercedes, Tesla, and Nissan, as well as automotive suppliers such as Bosch and 
Delphi, have announced plans to offer Level 3 technologies by around 2020 (Kilcarr, 2016). 
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Another Level 3 technology is platooning. SARTRE was a recent project where the platoon, or 
so-called “road train”, consisted of a V2V-equipped lead truck, manually driven by a 
professional driver, followed by up to eight cars, also equipped with V2V. These platoons 
were tested on public roads in Spain, travelling at speeds of up to 90 km/h with gaps 
between vehicles as small as four metres (Bergenheim et al., 2012). The “road trains” are 
being promoted especially as a way to allow motorists the freedom to perform other activities 
while travelling; in addition, its touted benefits are energy savings due to improved 
aerodynamics, improved traffic flow, and improved safety (Fleet News, 2012). 

Another demonstration of platooning technology took place in 1997, when the National 
Automated Highway Systems Consortium demonstrated an eight-car platoon, with vehicles 
traveling with 6.5 metre inter-vehicle gaps at up to full highway speed (Tan et al., 1998). 
Magnetic markers were buried in the roadway to enable the vehicles to detect their position in 
the lanes, as well as to receive information on upcoming curves, exits, and so forth, and the 
vehicles used V2V to communicate their movements. 

LEVEL 5 (OR HIGHLY ADVANCED LEVEL 4) 

Several projects to develop highly advanced automation are underway. It is not clear whether 
these projects are aiming at achieving Level 5 or a highly capable Level 4 system that can 
operate in a wide but not comprehensive range of situations. 

Google 

Google’s self-driving car project is the most prominent example of a project to develop Level 
5, or a highly advanced Level 4. While it is working on a Level 4 low-speed vehicle, it is 
continuing to work on automating conventional light-duty vehicles. Each test vehicle senses 
the environment with radar, cameras, GPS, and other sensors, but relies especially on a 
rooftop LIDAR (a remote sensing technology that scans the environment with laser light) to 
develop a detailed 3D map of the environment. That map is compared against another map 
that was developed beforehand while manually driving the route several times (Levy, 2016). 
Comparing the maps enables the automated system to identify features of the static 
environment, like traffic lights and crosswalks, as well as moving entities such as other 
vehicles, pedestrians, and cyclists. 

Google has conducted testing primarily in the Mountain View, California area; testing is now 
also conducted in Austin, Texas; Kirkland, Washington; and Phoenix, Arizona (Shepardson, 
David, 2016). 

More recently, the ridesourcing company Uber has been developing an automated vehicle. 
Similar to Google, their vehicle also relies on creating detailed 3D maps of an area before 
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driving those roads (Chafkin, 2016) (Aupperlee, 2016). In August of 2016, Uber began 
providing rides to members of the public in Pittsburgh in their test vehicles. The safety of the 
vehicle is monitored by a test driver and a copilot observer in the front passenger seat 
(Grabar, 2016). 

 

 

 

Figure 9. One of the light-duty vehicles in Google’s fleet of self-driving test cars. The LIDAR is prominently 
visible on the rooftop. Image source: Google. 

While Google’s vehicles have cumulatively driven long distances, the vehicles are 
continuously monitored by test drivers who take over control when situations arise that may 
be beyond the capability of the automated system; thus, while the precise capabilities of 
Google’s test self-driving vehicles are not clear from publicly available documentation, it is 
evident that they have not attained Level 5 capabilities. While their fleet of test vehicles has 
now driven large distances in automated mode with no reports of major safety problems – as 
of September 2016, Google reported that its fleet of test vehicles had driven over 3 million km 
in automated mode without having caused any collisions – this is a very limited indicator of 
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performance. One reason is that testing so far has generally been conducted in favourable 
conditions, avoiding difficult weather and road environments. Arguably more important is the 
fact that their vehicles are constantly monitored by human test drivers who take over control if 
there is any indication that a risky situation is emerging. The nature and frequency of these 
interventions has not been disclosed, 1  though Google team members have previously 
admitted interventions are frequent. In addition, it is interesting to note that Google’s monthly 
reports reveal that their vehicles are often driven in manual mode – approximately 1 km is 
driven in manual mode for every 4 km in automated mode.  

Other projects 

The Autonomos team, from Germany, have conducted various tests; most notable is a recent 
trip of 2400 km trip in Mexico (Mamiit, 2015). A long voyage was also conducted by Delphi 
earlier in 2015 – their team drove a vehicle from San Francisco to New York “with 99 percent 
of the drive in fully automated mode” (Prigg, 2015). However, this metric does not make clear 
the nature and frequency of test driver interventions. In 2010, the VisLab team also 
conducted a long voyage in their Intercontinental Autonomous Challenge, where two vans 
were driven over a 13,000 km route from Parma, Italy to Shanghai, China (Bertozzi, 2013). 
The lead van drove largely in automated mode, though a human driver frequently intervened, 
while the following van was fully automated and followed the route set by the lead vehicle. 
The vehicles generally had to be driven manually through cities. These vehicles drove without 
highly detailed maps of their routes, and primarily used cameras for sensing. In 2013, the 
VisLab team conducted a test of an automated vehicle on freeways and city streets in Parma, 
Italy, and negotiated some challenging environments, such as pedestrian crossings and traffic 
lights. It drove in a particularly risk-averse fashion – for example, coming to a complete stop 
before entering roundabouts or merging onto other roads (VisLab, 2013). Oxford University is 
developing a system that, like Google’s, depends on pre-developed 3D maps. Unlike 
Google’s system, it does not use GPS, and it uses a less expensive LIDAR system (Arthur, 
2013; Lee, 2013). In 2013, Mercedes-Benz tested an automated vehicle, that used 3D maps, 
over a 103 km route on German highways and city streets (Undercoffler, 2013). 

 

                                                   

 

 

1 In late 2015, Google provided a report to the California Department of Motor Vehicles that enumerated selected 
incidents where its test drivers intervened in the operation of its vehicles; however, the precise criteria for inclusion in the 
report were not made clear. (Google, 2015a) 
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Figure 10. A map of the route taken by the VisLab vehicle on its 13,000 km test drive from Parma to 
Shanghai. Image source: IEEE Spectrum.  
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4. Timelines of emergence of future 
technologies 

4.1 Advanced automation technologies: issues to resolve 

A number of issues must be resolved before more advanced technologies, including Level 3, 
Level 5, and Level 4 vehicles that can operate in a wide range of situations, emerge onto the 
market. 

TECHNICAL CHALLENGES 

Driving, whether conducted by human or machine, can be understood as comprising three 
main tasks: situational awareness, decision, and action. Situational awareness consists of 
sensing and interpreting the environment and the vehicle itself with respect to the 
environment. 

Automated systems generally have good capabilities in the action task, in that they are 
capable of executing precise and quick control of the steering and speed of a vehicle. For 
example, after detecting a hazard, an automated system is capable of activating the brakes 
more quickly than a human. Automated systems have certain strengths in the situational 
awareness task, but also have several weaknesses. They also have particular challenges in 
the decision task. 

Situational awareness 

Some sensors can detect objects humans cannot – for example, an infrared sensor may be 
able to detect objects in poorly-lit environments where a human would be incapable of seeing. 
Similarly, an automated system using V2X may have access to ancillary information not 
detectable by either humans or engineered sensors. In addition, automated systems are not 
prone to the distraction or fatigue problems humans suffer from.  

Different sensors have different strengths, and are not effective in some situations. LIDAR is 
useful for developing 3D maps and is relatively accurate, but is expensive, and functions 
poorly in rain and snow. Radar is effective for measuring motion and works in a range of 
conditions, but has lower accuracy. Cameras are useful for interpreting scenes and are 
inexpensive, but generate data that is challenging for automated systems to process (Santo, 
2016). Rain, snow, dust, and certain light conditions can confuse camera-based sensors 
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(Young, 2016). Google notes that in heavy rain, their cars “automatically pull over and wait 
until conditions improve”, or test drivers take over (Google, 2015b). It has been reported that 
water splashing from puddles also poses a problem (Bizjak, 2016), and even exhaust plumes 
or steam plumes venting from underground infrastructure that are barely visible to the human 
eye can cause problems for LIDAR (Radecki et al., 2016). Snow can obscure lane markings, 
road edges, or even the sensors themselves. Ford in particular has made early progress in 
automated driving on snow-covered roads (dailymail.co.uk, 2016)(Wong, 2016b). One 
approach is to navigate with respect to various objects, such as guardrails or signs 
(Richardson, 2016). It is not clear from available reports the level of reliability that has been 
achieved so far, nor is it clear how effective the technology is in falling snow (Davies, 2016).  
GPS performs poorly around tree canopies, tall buildings, and in tunnels. Radar and LIDAR 
are vulnerable to interference from other vehicles using the same sensing technologies. 
Extreme heat and cold can also affect sensors (Fung, 2016). 

In addition to improvements in existing sensors, new sensor technologies may help to 
address challenges in sensing. For example, MIT is developing a ground-penetrating radar 
that could help vehicles localize themselves on snow-covered roads by mapping features 
such as rock beds and soil layers underneath roads (Ryan, 2016). 

Interpreting sensed data about the environment is a particular challenge for automated 
systems. Interpretation is difficult in particular where the static environment is complex, 
cluttered, and not clearly structured – for example, where lane markings are worn away, or 
where road construction is underway. Interpretation is similarly difficult where the dynamic 
environment is more complex, cluttered, and rapidly changing – for example, where vehicles 
are rapidly changing speed and direction, and vulnerable road users such as cyclists and 
pedestrians are present. Humans outperform automated systems at interpreting these kinds 
of complex, ambiguous, poorly defined, “messy” situations (van den Beukel, 2011). These 
kinds of complex situations are especially common in urban environments, where there may 
be pedestrians, cyclists, children, animals, officers directing traffic, and doors on parked cars 
opening into traffic (Shladover, 2013a) (all of which are possible but less likely events in more 
controlled environments such as freeways). Such conditions are also challenging for 
automated systems since there is less available time and space to take corrective actions that 
may be necessary. 
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Figure 11. Complex, cluttered, highly dynamic urban environments, like this street in Montreal, are 
challenging for automated vehicles. Image source: Montreal Gazette 

Automated systems that depend on highly detailed prior maps of the environment are 
naturally limited by the range of territory for which such maps are available. Even where they 
are available, these systems have difficulty interpreting the environment where the reference 
maps have not been updated to reflect changes in the environment (Seo et al., 2012). This 
may be the case with construction zones, for example. 

Identifying objects is a challenge. Even objects that may be easy for humans to detect and 
interpret can be difficult for automated systems. For example, a Google engineer has noted 
that recognizing traffic signals can be challenging (Williams, 2016). Similarly, an automated 
system may have difficulty distinguishing a speed bump from a fallen pedestrian, or a plastic 
bag from a rock. Identification may be very difficult in some situations – for example, where a 
pedestrian is disguised by an elaborate Halloween costume (Kent, 2012). 

In addition, after identifying objects, an automated system must be able to make predictions 
about the behaviour of vehicles, pedestrians, and other objects in the environment. For 



Planning for automated vehicles in Edmonton – Final report 

 
24 

Antonio Loro Consulting Inc. – 10 October 2016 

example, an automated system may identify an object in the street as a ball, but it should also 
be capable of inferring that there is a possibility a child might run into the street after it (Levy, 
2013). 

Automated systems would also be challenged in situations where drivers currently rely on eye 
contact, gestures, or speech to communicate with other road users. Road users often 
communicate their intentions through more or less subtle cues – it is not clear how an 
automated system would function in a situation where a pedestrian waves to let a vehicle 
pass, for example. A situation that would be particularly challenging is where contradictory 
signals must be interpreted by the automated system – for example, where a police officer is 
directing traffic and overriding a traffic light (Blodget, 2013). 

Difficulty of ensuring reliability 

It will be a challenge to develop automated systems with overall capabilities comparable to 
those of humans – and the challenge may be increased if, to ensure public acceptance of the 
technologies, the vehicles need to demonstrate driving capabilities that exceed those of good 
human drivers. 

Steven Shladover of the California Partners for Advanced Transportation Technology notes 
that Level 5 systems would require failure rates “orders of magnitude longer than the mean 
times between failures for modern software-intensive consumer products such as laptop 
computers and mobile phones, and many orders of magnitude longer than any automated 
vehicle has ever driven continuously, in real traffic, and without human intervention.” He 
points out that currently, fatal collisions involving human drivers “occur about once per 2.5 
million hours of vehicle travel and injury crashes occur about once per 55,000 hours of vehicle 
travel”, which is a much better performance rate than existing electronic consumer products 
or complicated electro-mechanical devices (Shladover, 2013a). He also makes the 
comparison to aircraft autopilots, arguing that Level 5 “performance requirements are multiple 
orders of magnitude more difficult than they are for commercial aircraft autopilot systems, but 
at the same time the system needs to be multiple orders of magnitude cheaper (and cannot 
be guaranteed to receive the prescribed preventive maintenance). Compared to an autopilot, 
the automated road vehicle will need to track an order of magnitude more targets, with a 
tracking accuracy for each target a couple of orders of magnitude higher and the system 
needs to detect and respond to new threats a couple of orders of magnitude faster as well in 
order to provide safety.” 

To prove safety, extensive testing will be necessary. Smith, in a cursory analysis, found that 
“Google’s cars would need to drive themselves (by themselves) more than 725,000 
representative miles without incident for us to say with 99 percent confidence that they crash 
less frequently than conventional cars. If we look only at fatal crashes, this minimum 
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skyrockets to 300 million miles” (Smith, 2012b). A study by RAND further examined this, and 
found that automated vehicles would have to be driven hundreds of millions of miles and 
sometimes hundreds of billions of miles to demonstrate safety (Kalra and Paddock, 2016). As 
noted above, though Google’s fleet has driven approximately 3 million km in automated mode 
as of late 2015, test drivers intervene whenever risky situations emerge. Interestingly, 
according to a report from Google, their vehicles drove in automated mode up to 230,000 
miles without any “simulated contact events”, which they describe as events where human 
test drivers took over control and where counterfactual simulation of the event afterward 
indicated that the vehicle would have made contact with another object (Google, 2015a). This 
may appear to suggest that Google is approaching the threshold of capability postulated by 
Smith; however, it is important to emphasize that Google’s test drivers “err on the side of 
caution and take manual control if they have any doubt about the safety of continuing in 
autonomous mode… or in situations where other concerns may warrant manual control, such 
as improving ride comfort of smoothing traffic flow” (Google, 2015a). Therefore, it is too early 
to conclude that Google’s vehicles have attained very high levels of capability. 

Given the potential need to drive huge distances in testing, other testing approaches are 
being developed; for example, Zhao et al. proposed an approach to accelerate the testing of 
automated vehicles (Zhao et al., 2016). 

Affordability 

Another technical challenge is that automated systems must attain the necessary level of 
safety while being sufficiently affordable to allow for wide adoption. Currently, test vehicles are 
expensive, especially because of sensors such as LIDAR – currently, the LIDAR used on 
Google vehicles costs around $75,000. It is anticipated that these costs will drop. It is 
uncertain when and to what degree this will happen, though the sensor manufacturer 
Velodyne reports that its latest prototype will cost $8000, and prices will drop to under $200 
by 2018 (Young, 2016). On a related note, Shladover points out that the sensor, control, and 
actuation systems in a Level 5 vehicle would have to be “self-diagnosing, self-healing and 
functionally redundant to prevent their own failures”, which would require extensive 
development and testing and make the technology more expensive (Shladover, 2013a). 

ETHICAL ISSUES 

The decision-making process poses ethical challenges for automated systems, as some 
driving situations may require choosing between alternatives that impose different levels of 
risk on different road users. Numerous vivid examples of such situations can be imagined, 
such as a choice between the automated vehicle crashing into a pedestrian vs. a school bus, 
or a choice between crashing into a pedestrian vs. crashing into a truck and harming 
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passengers in the automated vehicle. Such choices require complex risk comparisons and 
entail ethical judgements. These ethical challenges are not unique to automated systems – 
human drivers would also struggle to make effective judgements in these situations. The 
unique challenge for an automated vehicle is the need to pre-program the vehicle’s decision-
making framework. In such situations, a human driver would be unlikely to be criticized for 
their ethical judgement, simply because they did not have sufficient time to weigh the 
alternatives according to their moral value; in contrast, because an ethical framework 
(whether explicit or implicit) would be programmed into an automated vehicle ahead of time, 
the programmer has plenty of time to consider what the appropriate action should be. The 
ethical judgments programmed into automated vehicles could raise legal and liability issues, 
and could also complicate public acceptance (Goodall, 2013). 

However, ethical issues for automated vehicles go beyond dilemma situations on the road. 
Automated vehicles also must make decisions that determine the level of risk to impose on 
their passengers and on other road users. The decisions they make will imply tradeoffs 
between safety and other priorities, such as travel speed. Another example of a decision that 
implies risk tradeoffs is a decision whether to travel through an intersection without 
decelerating and re­accelerating. This would reduce energy consumption, but would increase 
the severity of a potential collision. Similarly, if automated vehicles drive at short headways in 
platoons, they will consume less road space and could improve traffic flow, but they will also 
increase the risk of a pile­up collision. 

Difficulties in prediction introduce an additional ethical complication. For example, there is 
some uncertainty regarding the trajectory an automated vehicle may take, where it may steer 
to evade an object but instead lose traction and strike the object. In addition, the choices 
made by other actors on the road are difficult to predict. Various complexities may arise. For 
example, an automated vehicle may be programmed to give the passenger speedy service 
and to drive aggressively to do so. When the vehicle attempts to merge into freeway traffic, it 
may encounter another equally aggressive vehicle. Each vehicle may attempt to accelerate 
and cut in in front; this behaviour increases risk for the passengers in both vehicles. 

One possible response to such a scenario would be for manufacturers to program vehicles to 
be cautious during merges. In this case, when a cautious vehicle encounters another cautious 
vehicle attempting to merge into traffic, both slow down for each other, which wastes time 
and again potentially increases the risk of collisions, especially rear­end collisions. Another 
unintended consequence in this scenario would be where an opportunistic vehicle 
manufacturer continues to program their vehicles to be aggressive. Merging conflicts would 
become rare, since the cautious cars always let the aggressive cars ahead, but this would 
result in unfair delays being imposed on passengers in the cautious cars. To avoid such 
situations, automated vehicles will need to coordinate their behaviour. While V2V technology 
would be useful for this, it will still be necessary to develop rules that clarify behaviour in a 
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range of vehicular interactions, such as when one vehicle should let another ahead. This may 
be further complicated when automated vehicles must interact with human drivers, who may 
be less amenable to strict rule­following. 

Certain programming approaches may pose additional ethical challenges. For example, 
programmers may use a “deep learning” approach, used by Google and others (Hsu, 
2016b)(nvidia, 2016), where the automated system is exposed to an abundance of data and 
then guided to learn to recognize patterns. If the programmers use deep learning to allow the 
system to discover what driving choices to make in various situations, after this learning 
process is complete, the vehicle will drive itself using rules it has developed for itself. The 
programmers will not have programmed explicit rules, and will not be precisely aware of the 
rules the vehicle is following. The system “effectively ‘programs itself’” (Surden and Williams, 
2016). If the vehicle fails, it may be difficult to explain why the failure occurred (Knight, 2016). 
However, even if the behavioural rules the vehicle follows were not explicitly chosen by the 
programmers to align with an ethical framework, the choices the vehicle makes will still imply 
ethical valuations. A deep learning­based car may make choices that are criticized as 
unethical. If programmers are unable to predict precisely how the vehicle will behave in given 
situations, this may reduce public trust in such a vehicle. 

Furthermore, ethical questions arise before automated vehicles are allowed onto the roads. 
For example, key issues that must be addressed include that standard of safety an 
automated vehicle must meet before it is allowed on the road, and the level of certainty 
regarding the vehicle’s capabilities and limitations that must be achieved (Loro, 2016a). 

LEGAL ISSUES 

A number of jurisdictions have legalized the testing of automated vehicles with human 
monitors on public roads. In North America, these include US jurisdictions such as Nevada, 
California, Florida, the District of Columbia, and Michigan. In addition, the province of Ontario 
has published regulations for the testing of automated vehicles on public roads (Ministry of 
Transportation of Ontario, 2015). However, the legality of operation of Level 3, 4, and 5 
technologies, without continuous monitoring from a human driver, remains to be clarified. In 
2012, Bryant Walker Smith, a leading expert on the legal dimensions of vehicle automation, 
argued that the legality of such vehicles in the US is not clear, though US law “probably does 
not prohibit automated vehicles”. The U.S. Department of Transportation (USDOT) recently 
issued a federal policy on the testing and deployment of automated vehicles, including 
guidance on how to assess automated vehicle safety, guidance to state-level policy-makers, 
and discussion of existing and proposed regulations regarding deployment. The USDOT has 
requested the public to comment on the policy (USDOT, 2016). Each state must still develop 
their own legislation regarding automated vehicles. The legalization of the operation of Level 3, 
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4, and 5 automation will depend largely on proving safety, which, as mentioned above, would 
require extensive testing.  

LIABILITY ISSUES 

The question of who is liable for collisions also needs to be resolved. If the human is not 
driving, it is reasonable that blame for a crash should be laid elsewhere. Culpability for a crash 
may be distributed among various parties, such as an auto manufacturer, a designer of 
system components, or a computer programmer. The apportioning of blame would be a 
more complex problem with partially automated systems, where the human driver has some 
monitoring or backup responsibility.2 In general, manufacturers will face greater liability for 
crashes than at present; resolving this could stall the deployment of some rapidly emerging 
technologies (Marchant and Lindor, 2012). 

Some manufacturers have made apparently divergent statements on the issue of liability. For 
example, Frisoni et a. note that Volvo has stated that it will take responsibility for crashes 
caused by its automated vehicles, while Tesla has stated that the driver will be responsible for 
crashes that occur while Autopilot mode is on (Frisoni et al., 2016). However, Volvo has not 
clarified the details of how liability will be treated, such as in cases where control is being 
passed between the automated system and the human driver (Volvo, 2015). In the case of 
Tesla and their current Level 2 technology, while the company states that the human driver is 
responsible, this may be open to dispute. According to Bryant Walker Smith, a leading expert 
on automated vehicle legal issues, it is possible to argue that Tesla may in fact be liable in 
certain crashes, such as a fatal crash that occurred in May of 2016, by arguing that there are 
deficiencies in how the system is designed and how effectively users are supervised (Martinez, 
2016). 

Once the question of culpability is resolved, and assuming automation improves safety, 
insurance costs could decrease. This cost may simply be added to the sale cost of the 
vehicle, if the manufacturer bears liability for crashes (Peterson, 2012). Other changes may 
result; for example, no-fault insurance may become more common as manufacturers assume 
more responsibility (Kalra et al., 2009). 

                                                   

 

 

2 Volvo recently announced that they would “accept full liability whenever one of its cars is in autonomous mode”; however, 
they did not clarify various issues, such as how liability would be addressed during or shortly after transitions of control 
between a human driver and an automated system. (Volvo Car Group, 2015) 
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SECURITY ISSUES 

Security is a concern, especially for automated vehicles equipped with V2X (Petit and 
Shladover, 2014). In testing, researchers have already demonstrated the potential to gain 
access to and take control over a vehicle. There is concern that hackers could cause vehicles 
to crash, for example. The need to solve security problems could slow the emergence of 
some automated vehicle technologies. 

PRIVACY ISSUES 

Privacy advocates are also concerned about protecting the data on the movements of people 
that would be generated. Such concerns could hamper public acceptance of automated 
vehicles (Fagnant and Kockelman, 2015a). 

4.2 Level 3 timeline predictions 

There is a general consensus among experts that Level 3 technologies will appear in the 
range of 2020 to 2025. These systems would be capable of operating in a fully automated 
mode in controlled environments on freeways. For example, Shladover estimates that such 
systems could emerge in the 2020 to 2025 period (Shladover, 2013b); this assessment is 
reasonably close to that given by Steve Underwood of the Center for Automotive Research, 
who estimates that vehicles that can operate in automated mode on freeways or highways 
will emerge onto the market around 2020 (Underwood, 2013). These estimates are also close 
to some other estimates, such as Nissan’s statement that their Autonomous Drive technology 
would be available by 2020. 

4.3 Level 5 timeline predictions 

Predictions regarding when Level 5 will emerge onto the market are far more divergent. 

Some predict it will emerge soon. For example, the market research firm ABI Research has 
predicted Level 5 vehicles will be on the market by 2020, and panelists at the SAE 2013 
World Congress anticipated they would arrive between 2020 and 2025 (Costlow, 2013). The 
most recent estimate from the Canadian Automated Vehicles Centre of Excellence is that 
“fully-autonomous” vehicles will be commercially available by 2020 (Canadian Automated 
Vehicles Centre of Excellence, 2015). Others, such as Richard Wallace, a director with the 
Center for Automotive Research, and Ralf Herrtwich, who leads automation research at 
Daimler, have stated that Level 5 could emerge as early as 2025, but not earlier (Blua, 2013; 
Eisele, 2013). 
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Statements by Google are often pointed to as indications that Level 5 will emerge very soon – 
even as early as 2017. For example, in 2012, Sergey Brin, one of Google’s founders, stated 
in reference to the Google self-driving car that “you can count on one hand the number of 
years until ordinary people can experience this” (Fisher, 2013). The implication is that Google 
would have their technology available by 2017. In early 2015, the director of the project, Chris 
Urmson, stated that his aim was to have the technology ready in less than five years. Though 
Google’s statements are widely interpreted as referring to Level 5 (e.g., see Globis Consulting, 
2013), Google representatives have in fact not specified the level of capability of the 
technology they are aiming for. Some statements from Google have implied they may be 
aiming for Level 4 – for example, Anthony Levandowski, a manager in the project, mentioned 
that the vehicle would need to be able to come to a safe stop by itself if the driver failed to 
take over when requested. More recently, Chris Urmson of Google stated of their technology: 
“How quickly can we get this into people’s hands? If you read the papers, you see maybe it’s 
three years, maybe it’s thirty years. …[H]onestly, it’s a bit of both.” He further clarified that 
early versions of the technology would likely be restricted to favourable geographies and 
weather conditions (Gomes, 2016). 

Statements by other groups working on automation have often been interpreted over-
optimistically. For example, it was widely reported in 2013 that Nissan was promising a Level 
5 vehicle by 2020 (Bigman, 2013); however, Nissan had simply stated that they intended to 
introduce a feature called Autonomous Drive by 2020, which would likely be limited to 
highway driving and would require driver monitoring (Kiley, 2013). 

Recently, Mobileye and Delphi, who supply hardware and software to automakers, 
announced a partnership and an intention to provide Level 4 and 5 systems to carmakers by 
2019 (Etherington, 2016). The statement did not make clear when the companies intend to 
make available Level 5 systems in particular. Ford has stated an intention to make a Level 4 
vehicle commercially available in 2021 to provide ride-hailing and ride-sharing services (Ford, 
2016)(Mitchell and Wilson, 2016). BMW has also stated that it is aiming to provide highly 
automated vehicles by 2021(Mitchell and Wilson, 2016). 

Some predictions have Level 5 emerging further in the future. For example, Daniel Flores from 
the advanced technology group in General Motors has stated that Level 5 vehicles are “years, 
maybe decades away” (Shankland, 2013), and Jürgen Leohold, VW’s research chief, has 
estimated that they may be available in 50 years. Sven Beiker, a director with the Center for 
Automotive Research, stated in 2012 that “[t]wenty years from now, we might have 
completely autonomous vehicles”, with the qualification: “maybe on limited roads” (Sharma, 
2012), thus indicating that he does not necessarily expect that Level 5 will have emerged in 
that timeframe. Steven Shladover of the California Partners for Advanced Transportation 
Technology contends that Level 5 may be decades away (Brandom, 2012), and has even 
stated that it may not be achieved “even within this century” (Shladover, 2013a). 
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The wide range of predictions indicates a high degree of uncertainty regarding when Level 5 
will be available. However, there are several reasons it may be more reasonable to anticipate 
it will emerge further in the future than the most optimistic estimates suggest.  

Technical progress to date often overstated 

The level of technological advancement achieved to date is often overstated. For example, as 
discussed above, the large distance Google’s fleet have driven in automated mode, and the 
fact that they have apparently not caused any collisions while in automated mode, is often 
alluded to as evidence of very high capability. However, as pointed out above, the fact that 
testing takes place in favourable weather conditions and less challenging road environments, 
and under continuous human monitoring, with interventions of undisclosed frequency, means 
that it is not justified to infer that Google’s vehicles must have achieved very high capability. 
Similarly, while reports that 99 percent of the 3400 mile test drive of a Delphi vehicle from San 
Francisco to New York in 2015 was completed in automated mode (Prigg, 2015) may appear 
to suggest a high level of capability, it is not clear what situations the automated system was 
able to handle, and whether it would be able to reliably do so without vigilant monitoring by a 
human test driver. In general, where a human driver is available to intervene in the operation 
of the vehicle, it is not possible to make a meaningful assessment of the capability of an 
automated vehicle, just as it would not be possible to meaningfully assess the capability of a 
human driver who always has a driving instructor at their side who is always at the ready to 
take control with a second steering wheel and set of pedals. 

Technical challenges remaining may be underestimated 

While there are numerous significant technical problems to be solved, it is possible that they 
will be resolved soon. Some commentators contend that there is good reason to trust that 
will be the case. The rapid pace of development of information technologies in recent years 
and decades is often invoked as a comparison, often using the so-called Moore’s Law as a 
point of reference. While it is sometimes interpreted more broadly, Moore’s Law describes 
how the number of transistors that can be fitted onto a chip tends to increase exponentially 
over time. It has been suggested that, as was the case for capability and affordability in 
computing power, the capabilities and affordability of vehicle automation technology will also 
advance rapidly (Mui, 2013). However, while this may be the case, it is not prudent to ascribe 
any certainty to assertions that vehicle automation technologies will advance in accordance 
with the rapid trajectories of development described by Moore’s Law, since it is of course 
only a rule of thumb that happens to fit with recent progress in chip manufacture, rather than 
a deterministic law. In addition, the analogy to Moore’s Law may have limited applicability to 
vehicle automation since the various components of automated vehicles, such as sensors 
and software, may be more difficult to advance than transistor density. Nevertheless, it is also 
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prudent to acknowledge that it is quite possible that vehicle automation technology may 
advance rapidly in the coming years. 

A related note is that some commentators contend that there may be certain technological 
shortcuts to achieving Level 5. For example, KPMG has argued that the “convergence” of 
communication and sensors would reduce the need for expensive sensors (KPMG, 2012). 
That is, because on-board sensors and vehicle communications technologies have their own 
unique strengths and weaknesses, the contention is that combining the two technologies 
would allow the strengths of each to offset the weaknesses of the other. In this view, Level 5 
could be achieved before the existence of sensor-based technology that can 
comprehensively and reliably sense the environment, since V2X technologies would be able 
to “fill in the gaps”. However, V2X cannot reduce the need for sensors, as long as the vehicle 
must account for the presence of some non-communicating entities in the driving 
environment. For the foreseeable future, many vehicles will be non-communicating, as will 
most infrastructure, all or most pedestrians, and presumably most children on tricycles, cats, 
deer, soccer balls, fallen tree branches, and so forth. Unless such non-communicating 
entities are excluded from the driving environment, an automated vehicle must be capable of 
operating safely using on-board sensors alone. That is, the vehicle must have sufficient 
situational awareness with its on-board sensors alone to operate safely; V2X can enhance the 
vehicle’s situational awareness but cannot be relied upon to provide basic safety.  
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5. Safety 

According to various sources, human error causes 75 to 95 percent of crashes (Bayless et al., 
2013; Wierwille et al., 2002); so, if automated systems perform with a high level of reliability, it 
is plausible that augmenting or replacing humans with automated systems could improve 
safety significantly. Studies of some automated systems lend support to this view – for 
example, studies by NHTSA have found that crash avoidance systems could reduce various 
categories of crashes by 24 to 48 percent (Gupta, 2011). It is currently uncertain what degree 
of safety benefits higher levels of automation would produce, though there is clearly a large 
theoretical potential. Overall safety improvements would of course require that the rate of 
machine error is low enough that such errors do not outweigh the human errors that are 
eliminated. 

5.1 Safety benefits from less advanced technologies 

Safety improvements can be achieved with less advanced forms of automation. For example, 
according to some reports, automatic emergency braking systems could reduce crashes by 
27 percent, and V2V and V2I systems, without automation, could reduce by approximately 80 
percent those crashes that do not involve impaired driver conditions such as being drowsy or 
drunk (Najm et al., 2010; Rau et al., 2015). In 2016, the Insurance Institute for Highway Safety 
(IIHS) found that vehicles equipped with forward collision warning technology are 23 percent 
less likely to rear­end other vehicles. Vehicles that are also equipped with automatic 
emergency braking were found to be 39 percent less likely to rear-end other vehicles (IIHS, 
2016). 

5.2 Human factors risks introduced by Level 1, 2, 3 

In partially automated systems, driving responsibilities are shared between a human and a 
machine – either simultaneously or sequentially. While it is possible that this will result in 
safety improvements, the fact that responsibility for driving is shared between human and 
machine also introduces novel risks. These are so-called “human factors” issues. Because of 
these issues, the safety impacts of Level 1, 2 and 3 are highly uncertain – while some crashes 
might be prevented, new ones might be caused. 
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ENSURING THE HUMAN DRIVER FULFILLS THEIR RESPONSIBILITIES 

With these technologies, there is a risk that the human driver will fail to properly perform their 
driving, monitoring, or backup driver tasks. 

With Level 1, the challenge is to keep the driver engaged and ensure that they are effectively 
controlling either steering or speed while also effectively monitoring the environment and the 
performance of the system in controlling steering or speed (depending whether ACC or lane-
keeping is in operation). 

With Level 2 automation, the challenge is to keep the driver engaged and ensure that they are 
effectively monitoring the environment and the system’s performance and are able to take 
over immediately when needed. Though the driver is required to continuously monitor the 
operation of the vehicle, they may become complacent and their attention may wane as the 
vehicle appears to be dependably controlling the vehicle, but a situation beyond the 
capabilities of the system could arise suddenly and surprise the driver. There are examples of 
such failures to properly monitor and be available to take over that have been documented in 
online videos by drivers who recklessly overestimate the capabilities of the technologies, such 
as in recent videos posted by Tesla drivers (Zeigler, 2015). 

It is questionable how effectively existing Level 2 technologies maintain driver attention. For 
example, a Mercedes E-Class user reported that the vehicle’s Drive Pilot was able to “drive 
itself” for up to sixty seconds (Roy, 2016), while a Tesla Model S user reported that they only 
needed to touch the steering wheel approximately every five minutes (Sparks, 2016). Given 
such long periods of time, it is quite possible that the attention of a driver may drift away from 
the required task of monitoring the road and the vehicle’s performance. Tesla has issued 
software updates that provide additional warnings to the driver to maintain vigilance (Tesla, 
2016); however, it has been reported that Autopilot can still operate for over four minutes 
without touching the steering wheel to confirm that they are engaged in monitoring the 
system (Anderson, 2016). 

With Level 3 automation, the challenge is to re-engage the driver and ensure that they are 
able to safely take over control of the vehicle in a given time frame when requested. The 
driver may be deeply engaged in a movie, for example, or even fallen asleep (despite any 
prohibitions from the automaker). In such cases, there is a risk that situations may arise that 
are beyond the capabilities of the system and that require the driver to take over more quickly 
than they are able to. Depending on what activities the human driver is engaged in, a 
comfortable transition time could be well over eight seconds (Samuel et al., 2016), or 
potentially much longer (Merat et al., 2014), if a driver has fallen asleep, for example. 

Casner et al. (2016) point out that modern vehicles, even without automation, together with 
modern roads, already have the effect of making driving “a remarkably mundane task, 
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sometimes requiring little attention from the driver and luring the driver into distraction.” With 
the introduction of partial automation systems, this problem is significantly exacerbated. 

REDUCED SITUATIONAL AWARENESS 

In both level 2 and 3, a driver who is asked to take over control may have little awareness of 
the situation – how their vehicle is operating, what other vehicles are doing, what the road 
conditions are, and so on. In Level 2 automation, the driver may become distracted with other 
activities and be surprised by sudden changes in the driving situation. Similarly, in Level 3 
automation, situations may arise that require the driver to take over quickly. In such cases, 
the ability of the driver to respond to safety-critical events may be degraded (Martens et al., 
2007; Norman, 1990; Sarter et al.; Young and Stanton, 2002). 

DE-SKILLING 

As a driver comes to depend on automation to perform various tasks, they get less practice 
at performing those tasks and, as a consequence, may lose the required skills to perform 
those tasks adequately when the need arises (Cummings and Ryan, 2013). This is 
exacerbated by a so-called “irony of automation”, where an automated system may be most 
likely to require driver intervention for the most challenging driving scenarios that a de-skilled 
driver would find most difficult to handle (Bosker, 2013). 

RISK COMPENSATION 

Another potential pitfall with partial automation is the possibility of risk compensation and 
“moral hazard” (Vrolix, 2006) – a driver in control of a vehicle drives more carelessly or 
recklessly with an unjustified sense of assurance that the automated system will take over if a 
dangerous situation arises, and as a consequence, puts themselves and other road users at 
greater risk. 

DRIVER OVERLOAD 

In a vehicle with multiple automated systems, such as lane-keeping, adaptive cruise control, 
speed level warning, and route guidance, if these systems are poorly integrated, there is a 
risk that the driver could experience information overload in attempting to manage these 
systems. 
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IMPLICATIONS OF RECENT CRASH INVOLVING PARTIAL AUTOMATION 

In July of 2016, Tesla disclosed that an individual driving one of its Model S cars had died in a 
crash in Florida while using the vehicle’s “Autopilot” system in May of 2016. The feature 
allows the car to control its own steering and speed. This incident, while unfortunate and 
concerning, does not by itself support a strong conclusion that the Autopilot technology 
reduces safety. At the same time, there is currently no support for a strong conclusion for the 
contention that Autopilot actually improves safety. In brief, there is insufficient data at this time 
to evaluate the safety of the technology. 

Tesla noted that the death was “the first known fatality in just over 130 million miles where 
Autopilot was activated”, and further asserted that Autopilot “results in a statistically 
significant improvement in safety when compared to purely manual driving.” However, as 
RAND has explained (Kalra and Paddock, 2016), very large distances must be driven to 
provide strong statistical proof that an automated vehicle is safer than a human-driven vehicle. 
The distances cited by Tesla are not sufficient to provide such proof. Furthermore, Tesla cited 
the fatality rate “among all vehicles.” However, newer, higher­end cars like the Model S tend 
to be safer; in addition, Autopilot is intended to be used mainly in fair weather, on 
well­maintained roads, and in less complex traffic. Therefore, it is not useful to compare the 
crash statistics of Teslas using Autopilot with the broad fleet of vehicles on all roads (Loro, 
2016b). In short, the data currently available does not provide a sufficient sample size nor 
sufficiently representative data to support useful analysis.  

5.3 Level 4 

In the case of Level 4 vehicles where full automation is achieved by controlling the 
environment in particular, safety will depend in part on how effectively the environment is 
controlled. For example, in the case of protected lanes, safety would depend on how 
effectively potential hazards, such as unauthorized vehicles, or pedestrians and cyclists, are 
excluded from the lane. 

5.4 Level 5 

As Level 5 technologies do not exist yet, their safety impacts are inherently highly uncertain. 

A recent early analysis of collision rates in Google, Delphi, and Audi test vehicles suggests 
that these vehicles may have a somewhat higher collision rate than human-driven vehicles, 
though they were not found to be at fault for any of those collisions. The authors caution that 
little data is available so far, and the road and weather conditions the test vehicles drive in are 
not comparable to those that human drivers drive in (Schoettle and Sivak, 2015). In addition, 
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the test vehicles are continuously monitored by test drivers; therefore, even the tentative 
conclusions in the study are not well-supported. 

A more recent study from the Virginia Tech Transportation Institute, commissioned by Google, 
compared Google’s reported crash rates with crash data from naturalistic driving studies of 
human drivers in order to address the issue of unreported crashes by human drivers. The 
authors found that the crash rates for Google’s self-driving cars in automated mode are lower 
than the crash rate for human-driven vehicles (approximately 3.2 crashes per million miles 
versus 4.2 crashes per million miles) (Blanco et al., 2016). However, the cautionary notes 
mentioned regarding the study mentioned just above also apply to the Virginia Tech study – 
because Google’s vehicles are not tested in the full range of conditions that human drivers 
drive in, and they are continuously monitored by human test drivers who actively intervene in 
difficult driving situations, the crash data for Google’s vehicles cannot be meaningfully 
compared with crash data for human-driven vehicles. 

5.5 Safety impacts are dependent on adoption levels 

The potential safety improvements resulting from automation of course depend heavily on the 
level of adoption. This is especially the case with V2V technologies, since vehicles equipped 
with V2V can only communicate with other equipped vehicles. 

5.6 Other effects 

The safety impacts of automation technologies will also depend on the travel behaviour 
impacts. For example, if automation induces people to take more and longer trips, even if the 
risk of crashes per VKT drops, the overall exposure to risk might decrease by a smaller 
margin, or even increase. In addition, if traffic speeds increase, the severity of crashes could 
increase, even if the frequency of crashes decreases; and if traffic densities increase, the 
number and scale of multiple-vehicle crashes could increase. 

Safety may also be affected by unintended behavioural consequences – for example, drivers 
who see automated vehicles driving with very short following gaps may be tempted to 
emulate that driving style, despite their lack of ability to do so safely. A driving simulation 
study found that when drivers were surrounded by platoons with short following gaps, they 
tended to use shorter following gaps themselves, regardless of the fact that their reaction 
times would likely require longer following gaps to ensure safety (Gouy et al., 2014).  
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6. Efficiency of use of infrastructure 

6.1 Higher traffic densities 

The typical capacity of a freeway lane is about 1800 to 2200 vehicles (not including heavy 
trucks) per hour at speeds of around 100 km/h (Transportation Research Board, 2000). 
Under those conditions, around 11 percent of the length of the lane is occupied by vehicles, 
while the other 89 percent is the space left between vehicles (Chen et al., 2001; Shladover, 
2009a). An automated system capable of controlling a vehicle more precisely and with a 
shorter reaction time than a human makes it possible to safely follow a preceding vehicle at a 
closer distance, thereby increasing the longitudinal capacity of a lane. The quick, precise 
vehicle control would also smooth out traffic flows, reducing the shock waves that often 
disrupt traffic movement and lead to unstable “stop and go” traffic. 

To achieve short headways and damp out traffic shockwaves, automated vehicles must not 
be solely reliant on on-board sensors for information about surrounding vehicles, but must 
also be in communication with surrounding vehicles through V2V (Shladover, 2009b). V2V 
can provide information on the movements of other vehicles more accurately, reliably, and 
with shorter time delays than on-board sensors can (Shladover, 2009b). One reason is that 
V2V can provide information about the manoeuvres other vehicles plan to execute even 
before they are executed: for example, rather than waiting until sensors detect a change in 
the speed of the vehicle ahead, a vehicle equipped with V2V can begin decelerating as soon 
as it receives a message that the vehicle ahead is about to apply the brakes. Another reason 
is that sensors are subject to noise, interference, and inaccuracies, so their outputs must be 
filtered before being used for vehicle control, which leads to delays. Two other advantages of 
V2V are that it can provide information on vehicles that are beyond the line of sight of on-
board sensors, such as a car that is several cars ahead in the same lane, and it can provide 
information on the characteristics of other vehicles, such as their braking capabilities 
(Bergenhem et al., 2012; Nowakowski et al., 2010; Shladover, 2009a). 

PLATOONING: OPTIMIZING SAFETY AND TRAFFIC DENSITY 

To maximize capacity, short headways are needed, but this reduces safety; to maximize 
safety, large headways are desirable, but this reduces capacity. The ‘platooning’ approach 
has been proposed as an acceptable compromise, where both the objectives of achieving 
capacity and safety are met to a satisfactory degree by driving vehicles together in groups or 
‘platoons’ of several vehicles. Vehicles would drive in groups or “platoons” of several vehicles 
– around four to twenty vehicles is commonly proposed (Shladover, 1997a). The vehicles in 
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each platoon follow each other closely, for example, with gaps of around one to four metres, 
while the platoons are separated from each other by larger gaps, for example, around 10 to 
60 metres, to minimize the risk of collision if a leading platoon were to suddenly stop 
(Featherstone and Lowson, 2004; Li and Wang, 2007; Michael et al., 1998). Because the 
gaps between the vehicles in a platoon are small, even extreme decelerations or 
accelerations would produce small speed differences between the vehicles, thus reducing the 
severity of potential impacts should the vehicles collide with each other. Meanwhile, the gaps 
between platoons are large enough that a platoon can stop short of the platoon ahead if that 
lead platoon stops suddenly, or if less stringent stopping criteria are used, a platoon would 
impact the preceding platoon at low velocity (Hitchcock, 1995). 

 

 

Figure 12. Cars traveling in a platoon. Image source: California PATH 

The longitudinal and lateral motion of each vehicle is controlled automatically based on data 
from on-board sensors such as radar, laser, or magnetic sensors, as well as via information 
communicated between the vehicles on each vehicle’s speed, position, and planned 
manoeuvres, if the vehicles are equipped with V2V (Kavathekar, 2012; Kavathekar and Chen, 
2011). As mentioned above, the longitudinal control of the vehicle is usually referred to as 
adaptive cruise control, with the form that relies on V2V called cooperative adaptive cruise 
control (CACC), while the sensor-reliant form is sometimes called autonomous adaptive 
cruise control (AACC). 
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6.2 Degree of capacity increase 

Simulations and tests suggest capacity could increase in the range of 50 to 100 percent with 
CACC-equipped vehicles in platoons. This means an increase from around 2200 vehicles per 
hour to around 3000 to 4000, or more. 

Shladover estimates that the capacity of a lane occupied only by vehicles equipped with 
CACC could reach around 4000 to 4300 vehicles per hour. The estimate of around 4000 was 
based on a simulation where vehicles followed each other at a range of headways from 0.6 to 
1.1 seconds, selected from the headways participants in a field test of CACC had been 
observed to find acceptable. The estimate of around 4300 was based on an extrapolation 
from a demonstration of platooning that took place in 1997, when the National Automated 
Highway Systems Consortium demonstrated a single eight-car platoon with vehicles traveling 
with 6.5 metre inter-vehicle gaps at up to full highway speed (Tan et al., 1998). Such eight-
vehicle platoons, travelling at 105 km/h and separated by inter-platoon gaps of 60 metres, 
would provide a capacity of about 5700 vehicles per hour. After this so-called “pipeline 
capacity” is reduced by 25 percent to account for the extra space needed for entry and exit 
manoeuvres, the resulting capacity would be about 4300 vehicles per lane per hour 
(Shladover, 1997a, 1997b). Shladover has also stated that lane capacity could theoretically 
attain 6000 to 7000 vehicles per hour, but cautioned that not every lane on a freeway could 
serve that many vehicles, since space would be needed for manoeuvring to enter and exit 
from platoons and the freeway. 

Calvert estimated capacity would increase by around 50 percent to 3200 vehicles per hour 
when 100 percent of vehicles are equipped with CACC. Calvert’s estimate is considerably 
lower than Shladover’s estimate, despite the fact that Calvert’s analysis does not consider the 
capacity-reducing effects of lane changes and other manoeuvres that would reduce his 
estimate to something less than 3200. This is because Calvert assumes vehicles would follow 
each other with gaps of 0.9 seconds, since he found that with smaller gaps, traffic flows 
would become unstable (Calvert et al., 2011). These results were corroborated by similar 
findings from Ni (Ni et al., 2011). 

Harwood and Reed (2014) studied the impacts of platoons consisting of a manually-driven 
heavy truck in the lead and light-duty vehicles following behind. When 20 percent of light-duty 
vehicles on the road were contained in such platoons, each with five light-duty vehicles, the 
researchers found that the capacity of three lanes in the same direction increased to over 
7000 vehicles per hour, compared to 6000 per hour in a case with no platooning. 

Some studies have reported very large capacity increases; however, these estimates are 
founded on problematic assumptions. For example, Tientrakool et al. estimated that when all 
vehicles in a lane use CACC, capacity can exceed 10,700 vehicles per hour (Tientrakool et al., 
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2011), a capacity that is a factor of 3.7 times greater than capacity with manual vehicles, and 
Wang et al. estimated that capacity would exceed 14,000 vehicles per hour at 100 km/h 
(Wang et al., 2013). According to estimates by Shi and Prevedouros, capacity could triple (Shi 
and Prevedouros, 2016). Talebpour and Mahmassani (Talebpour and Mahmassani, 2016) 
found that there was “potential to improve the throughput by more than 100%”. However, 
these studies did not consider interplatoon gaps. As noted above, interplatoon gaps are 
necessary to ensure safety – without them, it is possible that a collision could result in 
massive traffic pileups. In addition, the gaps are necessary to allow vehicles to change lanes 
and to enter or exit the freeway. 

Other studies have considered interplatoon gaps and found that CACC could produce large 
increases, tripling (Olia, 2016) or quadrupling (Olia et al., 2015) lane capacity; however, these 
studies do not clarify what size of interplatoon or intraplatoon gaps were considered. 

Various studies estimate that platooning could reduce traffic delays by between 30 and 60 
percent (van Driel, 2007; Wilmink et al., 2007). 

The faster response of CACC would also help to reduce the shockwaves that force drivers to 
suddenly decelerate and create unstable traffic flow (Calvert et al., 2011; Chacon et al., 2012; 
Swaroop, 1997). CACC increases so-called “string stability”, where a disturbance at the head 
of the platoon will tend to be attenuated as it travels backward through the platoon. Schakel 
found that CACC can quickly dampen shockwaves when 50 percent of vehicles are 
equipped; however, he cautioned that it is possible that safety could be reduced when there 
is a mix of manual and automated traffic (Schakel et al., 2010). Visser found that when 20 
percent of vehicles are equipped with CACC, the number of shockwaves is reduced by 25 
percent, and when 100 percent of vehicles are equipped, the number of shockwaves is 
reduced by 90 percent (Visser et al., 2005). 

6.3 High adoption of CACC required for large capacity increases 

A first cautionary note on platooning is that large capacity gains would come only when a 
large proportion of vehicles on the road are capable of platooning.  

In a simulation study by VanderWerf et al., the authors found that the capacity gains were 
quadratic, with significant gains coming only after the proportion of CACC-equipped vehicles 
reached 60 percent, and an especially large gain when the proportion approached 100 
percent. This is due to the fact that shorter following gaps can only be achieved between 
pairs of vehicles equipped with CACC (VanderWerf et al., 2001). When 60 percent of vehicles 
use CACC, VanderWerf et al. found that capacity would reach 2900 vehicles per hour per 
lane, not accounting for lane changes, which decreases capacity (Ioannou, 1998). Similarly, 
Van Arem found no effect on capacity at penetration rates below 40 percent, with significant 
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benefits emerging around 60 percent (Arem et al., 2006). Arnaout found that at least 40 
percent of vehicles on the road must be equipped with CACC to significantly boost capacity 
(Arnaout and Bowling, 2011). A simulation conducted by Ma et al. also showed that a small 
proportion of CACC-equipped cars would have little effect on capacity (Ma et al., 2012). 
Tientrakool et al. found that for communicating vehicles, capacity improves very little when 
the proportion of communicating vehicles is less than 30 percent, then improves slowly until 
the proportion reaches 85 percent (Tientrakool et al., 2011). They found that for vehicles not 
equipped with V2V, capacity increased nearly linearly with the proportion of equipped 
vehicles; however, the capacity increase was much lower than in the case of communicating 
vehicles. 

Motamedidehkordi et al. (Motamedidehkordi et al., 2016) also found a small effect when the 
proportion of V2V-equipped vehicles was not large; they found that when 50 percent of 
vehicles were connected and automated, throughput increased by 5 percent. Kostikj et al. 
(Kostikj et al., 2015) found that when CACC-equipped vehicles comprise less than 80 percent 
of vehicles on the road, flow actually drops slightly; flow increases only when CACC-equipped 
vehicles make up more than 80 percent of vehicles on the road. 

V2V IS NECESSARY FOR LARGE CAPACITY INCREASES 

To realize large capacity gains, it is not sufficient that automated vehicles are widely adopted; 
it is necessary that the vehicles also be equipped with V2V (Shladover et al., 2012). As 
mentioned above, V2V allows for shorter following gaps. Numerous studies have found that 
the capacity increases resulting from the use of CACC would be much larger than those 
resulting from AACC. In one simulation, it was found that without V2V, a 7 percent capacity 
gain could be realized (Vander Werf et al., 2002); another study found that capacity would 
increase by up to a 9.5 percent when 40 to 80 percent of vehicles are equipped, but would 
drop somewhat when more than 80 percent of vehicles are equipped due to some users 
choosing a following gap longer than they would use when driving manually (Shladover, 1999; 
Shladover et al., 2001). Minderhoud estimated somewhat larger capacity gains, up to 25 
percent when 100 percent of vehicles are equipped (Minderhoud and Bovy, 1999). While 
Tientrakool et al. found a much greater increase, up to 4100 vehicles per hour when all 
vehicles in a lane are automated but not connected, the authors also assumed that the 
capacity of a lane with all manual vehicles is approximately 2870 vehicles per hour, and their 
model did not include inter-platoon gaps, which, as noted above, is not a realistic assumption. 

Le Vine et al. (Le Vine et al., 2016) examined the potential for safety increases with 
unconnected automated vehicles. They found that, depending on how legal doctrines of 
driving safety are interpreted, if vehicles drive such that they accept no more than a one-in-a-
million risk of a crash in the case of a lead vehicle performing emergency breaking, the 
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maximum throughput at 70 mph would range from 1,367 to 4,108 vehicles per hour. This 
seems to suggest a need for clarification regarding desired driving safety levels. Interestingly, 
the authors also find that while the maximum throughput for human-driven cars occurs at 53 
mph, the maximum throughput for automated cars occurs at 26 mph. This suggests a 
potential tradeoff between speed and capacity with unconnected automated vehicles. 

DEDICATED LANES COULD SUPPORT PLATOONING 

The benefits of platooning do not depend on the level of adoption in the overall fleet of 
vehicles in operation, but rather, they depend on the local prevalence of vehicles capable of 
platooning. That is, it is not necessary for the number of platooning-capable vehicles to be a 
large fraction of the overall fleet of vehicles on all roads; rather, it is necessary that platooning-
capable vehicles be a large fraction of the vehicles using a given lane. Therefore, the capacity 
benefits of platooning can be realized while adoption levels are still low by enabling 
platooning-capable vehicles to congregate on dedicated lanes (Bishop, 2001; Shladover et al., 
2001; Ward, 1997). Such lanes would also simplify the driving environment and thereby 
facilitate fully automated operation.  

Unfortunately, such dedicated lanes for public roadways suffer from a “chicken and egg” 
problem. That is, individuals are motivated to purchase platooning-capable technology only if 
they perceive a private benefit, such as reduced travel time or reduced workload, during their 
trip, but in order for these individuals to receive these benefits, the dedicated lanes must be 
present in the first place. If these lanes are not present, the concentration of platooning-
capable vehicles will be too low to enable platooning, and owners of the technology will not 
experience significant private benefits. Meanwhile, infrastructure providers will not be 
incentivized to provide dedicated lanes until a sufficient demand exists. If they provide 
dedicated lanes before a demand exists, the lanes will be poorly utilized and freeway capacity 
will be reduced rather than increased. 

However, there may be some traffic flow benefit provided by distributing vehicles with ACC 
throughout the lanes of a freeway. Vanderwerf argued that since ACC tends to attenuate 
traffic shockwaves, distributing these vehicles throughout all lanes could lead to more stable 
traffic flow (VanderWerf et al., 2002). 

CAPACITY IMPROVEMENTS LIMITED IF HEADWAYS CHOSEN BY DRIVERS 

The capacity improvements resulting from platooning would also be limited if the following 
gaps are controlled by the travelers. If they are given the opportunity to choose the time gap, 
some or many travelers may opt to have the longitudinal control system maintain a larger gap 
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in order to feel safer, more comfortable, or to maintain a degree of privacy from surrounding 
travelers. As Shladover notes, there would be a 20 percent capacity difference if drivers 
choose a gap of 1 second rather than 0.8 seconds (Shladover, 2000a). 

6.4 Capacity increases focused on freeways with widely spaced 
interchanges 

Because vehicles maneouvring to change lanes, enter into or exit from platoons, or enter or 
exit the freeway would significantly reduce lane capacity (Ran et al., 1997), capacity increases 
would occur mainly on freeways where entrance and exit ramps are widely separated. Vehicle 
entry into and exit from platoons reduces the achievable capacity by around a quarter or a 
third (Broucke and Varaiya, 1997; Feijter and Netherlands Research School for Transport, 
2006). This means that the capacity benefits of platooning would be limited on urban 
freeways, where entrances and exits are numerous (Minderhoud and Bovy, 1999). 
Interestingly, in freeway networks, congestion typically occurs at “bottleneck locations such 
as lane drops, on-ramps, weaving sections or other discontinuities in the road geometry” 
(Arem et al., 2016), which are also the areas where capacity increases from platooning would 
be limited. 

A related problem is the arrangement of vehicles in a platoon. Safety in a platoon is enhanced 
if vehicles that are more massive or have lesser braking capabilities are in the lead positions in 
platoons. Organizing vehicles in such orders could require numerous manoeuvres, or could 
require the creation of smaller platoons, and could thus limit the capacity benefits of 
platooning. 

LITTLE POTENTIAL FOR BENEFIT ON ARTERIALS AND STREETS 

Platooning would give much smaller capacity benefits, if any, on arterials and city streets, 
especially for those streets with more complex traffic flows. The complex, unpredictable 
movements of city traffic would diminish the capacity increases that platooning can provide. 
On streets, manoeuvres like lane changes, stopping at intersections, leaving room for cars 
turning left or parallel parking, accommodating vulnerable road users such as cyclists and 
pedestrians, and so forth, would make platooning much more difficult. One example of a 
study that examined automation on uncontrolled roads simulated the use of ACC on the road 
network of the greater Athens area, and found that overall flow in the network improved 
(Golias et al., 2001). The study does not appear to have given consideration to the 
complexities of urban traffic just mentioned, however. 
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Considering these points, it is reasonable to conclude that platooning would give much 
smaller capacity benefits, if any, on city streets. This would hold especially for those streets 
with more complex traffic flows. 

Nevertheless, some researchers suggest flows could increase on city streets. Ambühl et al. 
2016 (Ambühl et al., 2016) found that automated vehicles would increase flow through a 
simple network from 600 vehicles per hour to 1550 vehicles per hour. However, it is open to 
question whether their assumption that automated vehicles would have very short headways 
of 0.5 seconds is realistic. 

PLATOONING BEST SUITED FOR LONGER FREEWAY-BASED TRIPS 

Platooning would provide significant benefits mainly to longer trips that use freeways for a 
significant portion of the trip. The capacity increases resulting from automation would be 
focused either primarily or exclusively on freeways. Similarly, the private benefits resulting 
from platooning, such as faster travel and reduced workload for the traveller, would occur 
either primarily or exclusively while on freeways. Where trip origins and/or destinations are 
distant from the freeway network, and where the portion of the trip taken on the freeway is 
relatively short, platooning would not provide particularly large private benefits (del Castillo et 
al., 1997). 

The process of being automatically manoeuvred into or out of a platoon would of course 
consume time, and would thus reduce the time spent in a platoon and thereby reduce the 
benefits of automation for shorter trips. In addition, if many vehicles take short trips on 
freeways, their frequent manoeuvring into and out of platoons will limit capacity (Featherstone 
and Lowson, 2004). 

For platooning to benefit a large proportion of trips in a city, a large proportion of origins and 
destinations must be close to freeways (Beimborn, 1996), such as in a city where 
development is focused along freeway corridors, or with an extensive freeway network. This 
could be the case in a city where much development is focused along freeway corridors, or 
where the freeway network covers the city extensively.  

Considering these points, platooning would tend to provide greater private benefits for 
travelers taking longer trips, and would also produce greater capacity benefits where a large 
proportion of trips taken on the freeway are relatively long.  
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6.5 Platooning could lead to bottlenecks at entrances and exits 

Because platooning would primarily, or possibly exclusively, increase capacity on freeways, 
the capacity increases from platooning on freeways would attract traffic from other roads. 
This could reduce congestion on arterials in some areas (Shladover, 1998), but could lead to 
increased traffic at freeway entrances and exits (Wetmore, 2003) and could create 
bottlenecks on nearby streets where platooning results in minimal, or no, capacity increases. 
This would limit capacity increases for the overall network (Menon, 2010). In short, increasing 
freeway capacity would not increase the ability of the rest of the road network to absorb 
traffic. 

6.6 Flow breakdowns: less frequent, potentially more severe 

While breakdown of traffic flow might be less common, if traffic flow does happen to 
deteriorate on a freeway with dense platoons of traffic, the high traffic density means that 
queues would grow much more quickly than if the lanes were used by non-automated 
vehicles. On a related note, Kerner found that the effect of CACC on traffic breakdown at an 
on-ramp was ambiguous: while there was a potential for CACC to decrease the probability of 
traffic breakdown, there was also a potential for it to increase the probability of breakdown 
(Kerner, 2016). 

6.7 Truck traffic limits platooning capacity benefits 

Capacity increases would be limited where trucks make up a large proportion of vehicles on 
the road. Heavy trucks can be equipped for platooning; however, their braking capabilities are 
generally much poorer than those of light-duty vehicles, so they must leave larger following 
gaps. If heavy truck traffic increases, the anticipated capacity benefits of vehicle platooning 
may be diminished. 

6.8 Other issues for platooning 

When a vehicle follows closely in another vehicle’s “wake”, this can result in road spray 
problems. The following vehicle can get hit by rain, slush, salt, sand, stones, and other road 
debris (Templeton, 2012). This can reduce visibility and could disturb or damage sensors or 
otherwise damage the following vehicle. The simple solution is to increase the following gap; 
however, this reduces the capacity and energy-efficiency benefits of platooning. A related 
problem is that a vehicle closely following another may take in exhaust fumes from the 
preceding vehicle, which could reduce comfort and lead to health problems (Shladover, 
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1997a). Electric vehicles would of course avoid this problem; however, it does not appear 
that the problem has been fully solved for vehicles powered by internal combustion following 
at very close headways. 

6.9 Lateral capacity 

It is possible that the precise steering control provided by automation could enable the use of 
narrower lanes, thereby increasing the capacity of existing roads, or reducing the width of 
road necessary to provide a given number of lanes; however, significant gains are not likely 
until very advanced automation is very widely adopted. The potential gains from narrower 
lanes are small compared to the potential gains from shorter headways – while only around 
11 percent of the length of the lane is used by manually driven vehicles, around half of the 
width of the lane is used (Transportation Research Board, 2000). Freeway lanes are typically 
at least 3.5 metres wide, but even large SUVs are rarely over 1.8 metres in width. The surplus 
width is provided to accommodate heavy trucks and buses, which can be as wide as 2.7 
metres, and to accommodate imprecision in steering by drivers, especially drivers of light-
duty vehicles, most of whom are not trained professional drivers (Shladover, 2009a). Since 
current lane widths are designed to accommodate heavy trucks and large vehicles, 
substantial reductions in lane width would require that the narrow lanes be provided 
exclusively for light-duty vehicles (Shladover et al., 2012). 

A more radical idea is roads without lanes, where vehicles follow trajectories that are not 
delimited by lanes at all. Kala et al. made a preliminary exploration of this idea (Kala and 
Warwick, 2013). It is not clear how this concept would affect traffic flow, and while it may 
have potential for application at some point, it is likely that Level 5 automation will have to 
have attained very high levels of adoption to ensure safety. 

6.10 Coordination of vehicles at intersections 

Automation combined with V2X raises the potential to coordinate the movements of vehicles 
to improve traffic flow at intersections. 

It has been proposed that intersections would have no need for signals or signs; instead, cars 
equipped with V2X would “call ahead” to a roadside computer to request a time and space 
slot in which to move through the intersection. This “intersection manager” grants the request 
and the vehicle moves through the intersection in that time-space slot. In such a “reservation-
based intersection”, there would be little stopped traffic (Dresner and Stone, 2004, 2008).  
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Figure 13. Simulation of vehicle movements through a reservation-based intersection. Image source: 
Autonomous Intersection Management project 

Simulations show that these intersections could significantly reduce delay. Simulations by 
Dresner and Stone showed that the reservation-based system was able to handle much 
heavier traffic conditions than can traffic lights, and could very closely approximate the 
performance of an overpass (Dresner and Stone, 2004). A similar study by Lee and Park 
found that a hypothetical four-way intersection performed significantly better than a 
conventional intersection, achieving a 99 percent reduction of stop delay and a 33 percent 
reduction of total travel time (Lee and Park, 2012). Fajardo et al. studied a reservation system 
and also found that it performed significantly better than a traditional traffic signal, “reducing 
average vehicle delay by an order of magnitude in all cases” (Fajardo et al., 2011). They also 
found, however, that more conservative spacing buffers around the vehicles greatly reduced 
projected performance improvements. Ma et al. looked at a different application of vehicle 
automation to intersections. In their simulation, they found that CACC-equipped vehicles at 
an intersection without traffic lights would result in smaller delays compared to conventional 
traffic at a signalized intersection, while, in contrast, CACC-equipped vehicles at an 
intersection with traffic lights with fixed signal times would result in increased delay. 

Yan conducted simulations of a similar system and found that queue length was decreased 
by over 75 percent for some levels of traffic flow, and the average vehicle waiting time was 
decreased by 77 percent (Yan et al., 2013). Li also simulated a similar system and found that 
capacities through the intersection were increased between 31 and 37 percent compared to 
a standard signalized intersection. Park and Lee describe a system that reduces stop delay 
by 99 percent and reduces total travel time through the intersection by 33 percent. Zohdy 
analyzed an algorithm to control the movements of automated vehicles through intersections, 
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called iCACC, for intersection management using CACC (Zohdy et al., 2013). The iCACC 
controller controls vehicle trajectories entering an intersection to avoid collisions while 
minimizing the intersection delay. Simulations found that iCACC gave similar delays to a 
roundabout, but significantly shorter delays than a conventional traffic signal. 

Levin et al. (Levin et al., 2016) found that reservation-based intersections can be less efficient 
than signals in certain situations, especially where a higher-traffic road intersects with a lower-
traffic road. In such asymmetric intersections, reservation-based intersections (following a so-
called “first-come-first-served” policy, where vehicles that arrive at the intersection first are 
given priority) can increase total delay, and especially increase delay for vehicles on the 
higher-traffic road. Nevertheless, in a simulation of Austin, Texas, they found that reservation-
based intersections reduced travel times by 50 percent. They attributed this mainly to the 
small number of asymmetric intersections. Patel et al. (Patel et al., 2016) similarly found that, 
at high demand, reservations performed worse than signals, particularly around local road-
arterial intersections. 

Automation, especially in combination with V2V, also raises the possibility of increasing the 
efficiency of vehicle movements at intersections with traffic signals. At traffic signals, there is 
some delay between when the lights turn green and the first vehicle moves. Friedrich 
(Friedrich, 2016) found that automated vehicles would increase lane capacity by 
approximately 40 percent. This finding was based on the assumption that automated vehicles 
would drive with very short headways of 0.3 seconds. Such a short following gap may not be 
implementable on the roads until automation and V2X technologies are highly advanced. 

An obvious and major limitation of such approaches to coordinating traffic flows through 
intersections is the degree to which they would be able to accommodate users of non-
automated vehicles, as well as users of other modes of transportation, such as walking or 
cycling.  

Dresner and Stone addressed the question of how reservation-based intersections could 
accommodate vehicles under the control of human drivers (Dresner and Stone, 2006, 2007). 
They modified their reservation-based system in order to implement it in a modelled 
intersection with traffic lights and pedestrian- or cyclist-activated crossing signals. The 
authors found that when there is a mix of automated and human-driven vehicles, all vehicles 
benefit from reduced delay, including the human-driven vehicles. Unsurprisingly, they found 
that the lower the proportion of human-driven vehicles, the lower the delay. 

An unresolved issue is the performance impact of pedestrians and cyclists. Dresner and 
Stone briefly discuss how pedestrians and cyclists can also be accommodated, but they do 
not discuss how the performance of the intersection would be affected, nor the impact on 
pedestrians and cyclists. Presumably, higher numbers of pedestrians and/or cyclists would 
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result in smaller reductions in delay for vehicles. It is reasonable to conclude that such 
intersections would produce limited improvements in capacity in busy urban areas with 
pedestrians and cyclists, while they could produce somewhat larger improvements in urban 
areas with fewer pedestrians and cyclists. 

Considering these points, until Level 5 automation with V2X is adopted to a high degree, 
vehicle automation is unlikely to significantly increase capacity at most urban intersections, 
though some increases would be feasible in areas not frequented by pedestrians or cyclists. 

6.11 Transit operations efficiency 

While the potential for automation in light-duty vehicles to improve traffic flow is often the 
focus in discussions of the potential impacts of automation, automation also has the potential 
to significantly improve bus transit operations (Hardy, 2005; Shladover, 2000b). Automation in 
transit buses can facilitate operation in narrow rights-of-way, precision docking, bus 
platooning, and full automation. These applications can increase speeds, reduce dwell times, 
increase passenger comfort, reduce labour costs, and facilitate increased capacities and 
frequencies. In short, automated buses can provide a quality of service similar to that of rail. 

In cases where travel demands approach the limits of road capacities, automated buses 
could serve an indispensable role – this is simply because vehicles with high passenger 
capacities, such as buses, can carry larger numbers of travelers along a given road lane than 
even densely platooned automated light-duty vehicles could. According to Shladover, if buses 
were platooned with 15 metre gaps, with sufficient separation between platoons to ensure 
safety, “a sequence of three-bus trains could provide 70,000 seats per hour in one lane, 
which is competitive with the highest-volume rail transit services” (Shladover, 2003). 

OPERATION IN NARROW RIGHTS-OF-WAY 

The steering precision made possible by automated steering systems make it possible for a 
bus to travel safely in a much narrower lane than a human operator could, and at higher 
speeds as well (Hardy, 2005). This is a particularly useful application for a bus rapid transit 
(BRT) service operating in a dedicated busway. An automated bus can maintain its lateral 
position to within 10 centimetres at cruising speed (Shladover, 2012), allowing the bus to 
operate in a lane that is only inches wider than the bus itself – considerably narrower than a 
conventional lane. A conventional bus lane is around 3.7 metres in width, while a guided bus 
lane can be as narrow as 2.9 metres (Hardy and Proper, 2006). 

The precise steering also permits safe full-speed operations where drivers would normally 
need to slow down, such as through curves, toll booths, and narrow bridges and tunnels, on 
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busways in former rail rights-of-way, on freeway shoulders (letsgetmoving.org, 2015), or in 
crowded urban environments, thus reducing passenger delays (Shladover, 2012). 

Importantly, the use of narrow rights-of-way reduces land and construction costs for new 
busways, especially where tunnels or bridges are required, and helps to avoid the need for 
changes in road alignment (Hardy and Proper, 2006). According to Bu, automated steering 
could make possible 20 percent lower construction and acquisition costs, or could allow for a 
bike lane or parking lane on arterial roads (Bu et al., 2007). In addition, precise steering also 
makes it possible to pave only the wheel tracks, thus reducing the amount of impermeable 
road surface by over 50 percent (Zhang et al., 2007). 

In partially automated applications, automatic steering could also decrease driver workload 
and stress when driving in narrow lanes or other challenging environments. 

PRECISION DOCKING 

Precise steering also allows for precision docking, where buses quickly and reliably pull in 
very close to boarding platforms, thus improving access for passengers, especially those with 
limited physical mobility, which reduces station dwell time, and enables allows faster and 
more consistent travel times, increasing schedule reliability. Precise docking can eliminate the 
need for wheelchair lifts. The lateral precision of around 1 centimetre at low speeds 
(Shladover, 2012) enables the bus to quickly and reliably pull in very close to the boarding 
platform without increasing driver workload (Hardy, 2005). It is difficult for bus drivers to 
achieve this level of accuracy, and in the attempt, tires are often scuffed against the curb, 
which causes wear, increases maintenance needs, and reduces passenger comfort. An 
evaluation by Zhang et al. concluded that precision docking offers a high ratio of benefit to 
cost, even when only small amounts of time are saved at each stop (Shladover et al., 2007; 
Zhang et al., 2007). 

BUS PLATOONING 

When automated steering is combined with automated longitudinal control, bus platooning 
becomes possible. Buses, especially when equipped with V2V, can safely follow each other 
at closer distances than possible with human drivers – within a half vehicle length.  

Platooning with one or more fully automated, driverless buses can be used to increase 
capacity and lower labour costs. A bus platoon could operate with a driver in the lead bus 
monitoring operation, and with the following buses operating without drivers, or the entire 
platoon could operate without drivers. 
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Following at close distances also significantly reduces aerodynamic drag, which in turn 
reduces fuel consumption and emissions (VanderWerf et al., 2004). These benefits would be 
more significant for buses than they would be for light-duty vehicles. 

In effect, platooning would allow buses to provide a service similar to trains without the need 
for rail infrastructure. Unlike trains, the buses could operate on the larger road network, 
enabling “dual mode” operation, where a bus could operate manually on uncontrolled roads 
for a portion of its service and join a platoon, on a protected busway, for example, for another 
portion of its service (Tsao, 1998). This could allow for labour savings if drivers transfer off of 
buses when the bus joins the protected busway, or if driver wages are lower during 
automated operation. 

FULL AUTOMATION 

Fully automated operation would also be possible, especially in protected busways. This 
would enable reduced labour costs, which would allow for significant increases in service 
frequency. Full automation in buses would also make it possible to provide higher frequency 
service with smaller vehicles. 

Since buses can operate at shorter headways than trains, there is also the possibility for fully 
automated BRT to offer higher frequency service and thus allow for shorter station platforms 
than would be required by rail. 

Relevant insights can be drawn from experiences with driverless train operation. Walker 
explains that in driverless trains, frequency of service is no longer tied to labour cost (Walker, 
2010). According to Vuchic, “by far the most significant aspect of transit service that 
automation can bring is economic feasibility of running high-frequency service with either long 
or short train consists at all hours of the day and on all days of the week” (Vuchic, 2007). This 
is particularly useful in off-peak times, where rather than running infrequent and long trains, 
automation allows the running of more frequent, shorter trains with no increase in operating 
cost (Erbin and Soulas, 2003; Fischer, 2011; Warren and Kunczynski, 2000). As explained by 
Stein, “[w]hen paying a driver, a transit system must try to get its money’s worth by putting as 
many passengers in the train as possible. For example, a system might try to use six­car 
trains. But such trains may fill up only if they do not arrive too often, so the time between 
trains, or “headway,” might be lengthened to 12 minutes. A driverless train system with the 
same number of vehicles could run three­car trains every six minutes, or two­car trains every 
four minutes – without increasing its payroll” (Stein, 1992). 

The higher operating speeds and shorter dwell times enabled by automation could improve 
the productivity of BRT, allowing agencies to serve routes and provide given capacities with 
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smaller fleets. The increased productivity and service quality could attract more riders and 
support increased fare box returns. These improvements in speed, reliability, capacity, 
frequency, and ride quality could make automated bus rapid transit a strong competitor to 
light rail. 

OTHER BENEFITS OF AUTOMATION IN BRT 

It has also been suggested that partial automation could reduce driver stress. For example, 
because steering is one of the most demanding driving tasks, automated steering allows the 
driver to pay more attention to safety, speed, and customer service tasks. However, as 
described above, partial automation introduces human factors challenges. 

6.12 Low-speed vehicles 

Low-speed shuttles such as the “cybercars” being developed by the CityMobil2 project can 
take compact, lightly built forms. These compact forms suggest that these low-speed 
shuttles might use road space more efficiently than conventional light-duty vehicles; however, 
it is unlikely that they would provide road capacity benefits. This is simply because road 
capacity depends both on the density and speed of vehicles. If such low-speed vehicles 
substitute for conventional light-duty vehicles that would have been traveling at higher speeds, 
then road capacity will probably decrease. Of course, the capacity referred to in this 
discussion is the number of vehicles that flow past a given point in a given time. Passenger 
capacity, the number of passengers that pass a given point in a given time, could increase 
even if speeds drop in the case that low-speed vehicles carry a higher number of passengers 
than conventional vehicles, on average. 

6.13 Reduced vehicle size facilitated by automation 

Automation also raises the prospect of increased efficiency of use of road space facilitated by 
smaller vehicles. If automated vehicles have excellent crash avoidance capabilities, 
automobile design could shift away from crashworthiness. Vehicles could then be built much 
smaller and lighter (and thus more cheaply), and various safety features like airbags can be 
dispensed with. Vehicle design could also be more flexible, as fully automated vehicles would 
not need steering wheels or other controls, for example, and interior spaces could be 
designed for other uses. In this narrative of the future, it is often envisioned that the 
convenience of fully automated taxis would have encouraged a shift away from private vehicle 
ownership. While some trips would be taken in larger vehicles when space is needed for more 
passengers or cargo, most trips would be taken in very compact driverless taxis (Gilbert, 
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2013). Such compact vehicles would be more energy-efficient, material-efficient, and would 
occupy less road space (Mitchell, 2010). However, these vehicles would be unlikely to be able 
to share the roads safely with larger non-automated vehicles. Small, light automated vehicles 
would be vulnerable in collisions with large and heavy vehicles; in such crashes, 
crashworthiness will still be necessary, especially while some vehicles are still being driven by 
humans, since there would still be some crashes they would not be able to avoid. Therefore, 
a broad shift away from crashworthiness toward significantly smaller and lighter vehicle 
designs is unlikely until very advanced automated vehicles have been very widely adopted, 
and the technology is advanced enough to guarantee high levels of safety. However, such a 
shift in design is possible where small, light automated vehicles are segregated from heavier 
vehicles, especially heavier non-automated vehicles. 

6.14 Safety effects on efficiency of road use 

Capacity improvements could also be realized through the safety improvements that 
automation may provide. Improved safety would reduce non-recurrent congestion due to 
crashes. Level 5 in particular could reduce non-recurrent congestion not only on freeways, 
but also on streets. 

The magnitude of capacity benefits is uncertain due to uncertainty regarding the safety 
benefits of automation. However, the research literature suggests the improvement would be 
noticeable, but modest. Non-recurrent congestion is congestion due to incidents such as 
vehicular crashes, breakdowns, and debris on roads, roadworks, and weather (Medina, 2010). 
In an analysis by Hall, a complete elimination of incidents would result in a 2 to 9 percent 
increase in capacity averaged over time (what he calls “effective capacity”) for a studied one- 
to five-mile bottleneck. In a discussion of an estimate by Lindley that about 60 percent of 
congestion delay is non-recurrent, Hall noted that this estimate can be misinterpreted. While 
this estimate seems to indicate that 60 percent of the congestion problem is due to non-
recurrent delay, Hall writes that “even the complete elimination of incidents would not reduce 
delays by 60 percent” because improvements would stimulate latent demand and thus 
increase delays due to recurrent congestion (Hall, 1993). Hajbabaie examined sources of 
congestion on a freeway in North Carolina and found that traffic incidents were responsible 
for only 12 percent of delay (Hajbabaie et al., 2012). 

6.15 Efficiency of parking infrastructure use 

The efficiency of use of parking space could be increased by increasing the density of parking 
lots. Drivers could exit their vehicles and leave them to park themselves in tight spots. One 
example of an automated valet system that could facilitate this is being developed by Volvo, 
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though the main intention of the project is to increase driver convenience rather than improve 
space efficiency. In this system, a driver drops off their vehicle at the entrance to the parking 
facility and the car navigates with the aid of transmitters in the road surface (Economist, 2013). 
Audi is working on a similar garage system for self-parking vehicles that reportedly could 
reduce space needs by over 60 percent (Bigelow, 2016)(Knight, 2013).   

Before parking facilities like these exist, there would have to be sufficient demand, which 
means that there would have to be a sufficient number of vehicles capable of this kind of 
automated valet parking. Automated valet parking may also be possible in parking facilities 
that are not equipped with transmitters or other special infrastructure, provided the vehicles 
are equipped with Level 4 or 5 automation, or provided that they move at limited speeds and 
generally operate in a risk-averse manner. 

A shift in vehicle design to smaller vehicles could also facilitate such a shift to increased 
parking density. 

Automation could also facilitate changes in parking demand – this will be discussed in 
Section 9.2. 

There are other potential impacts of vehicle automation on infrastructure. For example, KPMG 
argues that fully automated vehicles, thanks to the use of various sensors, would have no 
need for traffic signals and bright streetlights, thus allowing reductions in energy use and light 
pollution (KPMG, 2012); however, these kinds of impacts are likely only in the very long term 
when very advanced automation has achieved very high or even 100 percent adoption rates. 
Further research should be conducted on such far-term potential impacts.  
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7. Environment 

Automation, especially when combined with V2V, could enable smoother, more efficient 
driving, with smoother speed profiles. Mersky and Samaras (Mersky and Samaras, 2016) 
simulated a range of automated driving styles and found that while some vehicle following 
strategies could result in slightly worse fuel economy, efficiency-focused control strategies 
could result in a 10 percent improvement. Platooning could improve aerodynamic efficiency, 
especially for heavy-duty vehicles such as trucks and buses, which could benefit from 
significant energy savings. 

In addition, if vehicles become lighter and smaller, energy consumption would be reduced. 
This would also facilitate a shift to electric power. One simulation study found that if small 
vehicles are used for the 87 percent of trips in the US that are taken with one or two people, 
the energy consumption of the overall fleet could be almost halved (Greenblatt and Saxena, 
2015). However, as noted above, small, light vehicles would be vulnerable as long as heavy 
vehicles are around – especially heavy vehicles driven by humans. Until crash avoidance is 
sufficiently advanced, or until heavy non-automated vehicles are rare, a shift away from 
crashworthiness to very small, light vehicles is unlikely. The exception is where traffic is 
segregated – in such cases, it would be feasible to operate lightly built vehicles in the near 
future, even before highly advanced automation has been developed. 

Wadud et al. consider (2016) a range of potential impacts on energy consumption. Potentially 
positive effects include a reduction in energy wasted in congested traffic, more efficient 
driving styles, reduced aerodynamic drag with platooning, the use of smaller, lighter vehicles, 
a reduction in travel due to a shift away from private vehicle ownership, and a shift toward 
new energy sources, such as electricity. Potentially negative effects include an increase in 
travel speeds, a demand for vehicles with additional interior features and an associated 
increase in vehicle weight, an increase in travel due to reduced cost of travel time (also 
discussed by (Rubin, 2016), and an increase in travel by groups such as elderly and young 
people. They consider a range of scenarios and find that automation, at one extreme, could 
result in a 45 percent reduction in total energy demand from road transportation, or at 
another extreme, could result in energy demand more than doubling. 

A detailed review of the potential environmental impacts of vehicle automation is beyond the 
scope of the present report. 
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8. Adoption 

How rapidly and to what extent vehicle automation technologies are adopted will be 
determined by the expected private benefits and costs of automation technologies for the 
owner. In particular, the impacts on driving performance and on driver workload discussed 
above, along with the capital costs of the technologies, will determine how attractive the 
technologies are and will drive adoption. 

8.1 Capital costs of technologies 

When highly advanced technologies such as Level 5 vehicles emerge onto the market, it is 
uncertain how much they will cost. Currently, Level 2 technologies that are available on the 
market are generally only available in more expensive vehicles. For example, Tesla’s Autopilot 
is available on the Model S, which starts at $66,000. The feature costs an extra $2500. The 
Level 2 technologies on the Mercedes E-Class cost over $11,000, while the vehicle cost 
starts at over $52,000 (Star Tribune, 2016). Regarding test vehicles for more advanced 
automation, it has been reported that Google’s teste vehicles cost around $150,000. One of 
the most expensive components used in many automated vehicles is the LIDAR – the version 
that Google used in its earlier prototypes cost around $70,000. Less expensive systems are 
now available, costing as little as $8000, but may be less effective (Oreskovic, 2015). It is 
expected that the cost will drop greatly, though the magnitude and timing of the drop is highly 
uncertain. 

High costs may not discourage the earliest adopters, since such early adopters are often 
willing to pay high prices for highly advanced technologies (Lucey, 2013). However, in order 
for adoption levels to attain significant levels, costs will need to be reasonable. 

Some commentators have ventured estimates for costs of future technologies. For example, 
the market research firm IHS Automotive has estimated that when they first emerge, 
advanced automated systems would add about $7000 to $10000 to a vehicle’s sale price, 
and this figure would drop to about $3000 within ten years. 

Private vehicle owners would pay the capital costs directly when purchasing a vehicle; in the 
case of fleet owners, these costs would be passed on to the end users, the taxi, car share, or 
bus users, who would pay this cost through their fares.  

These costs could also be offset by government incentives. 
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8.2 Private benefits to owners 

The potential private benefits of automation that would spur adoption are improvements in 
driving performance and the reduction or elimination of driving labour. 

The prospect of reducing or eliminating driving labour would be a major attraction for both 
private vehicle owners and fleet owners. Depending on the level of automation, it would 
reduce driving stresses, free up the traveler’s time to perform other activities, and reduce 
labour costs for fleet owners.  

Fully automated vehicles could allow for greater independent mobility for those less able or 
unable to drive, such as elderly people, children and adolescents, and people with reduced 
physical mobility. 

LEVEL 2 AND 3 

Level 2 would have low attractiveness with respect to its ability to reduce or eliminate driver 
labour. A technology that requires constant monitoring from the driver would ease driving to a 
limited degree, and only in limited situations. It could actually increase stress if drivers find it 
difficult to stay engaged in their monitoring duties. Level 3 would be significantly more 
attractive, as the technology could operate in more situations, and would only requires the 
driver to be available for backup. However, the fact that such a technology could operate only 
in certain situations, and could require a driver to take over control quickly, would still limit its 
attractiveness. 

Operators of taxi fleets would probably not be strongly attracted to Level 2 or 3 automation 
since it would provide very little cost savings or improvement in operations. Taxis equipped 
with these levels of automation would still require drivers. However, since a taxi driver’s 
workload would become lighter, it is possible that taxi operators may be able to reduce 
operating costs somewhat by reducing driver wages; on the other hand, the driving 
performance of drivers of taxis with these levels of automation may suffer due to de-skilling. 
Operating costs may also be reduced if automation allows taxis to operate more safely and 
with more energy-efficient driving patterns.  

LEVEL 4 

The fact that Level 4 can only operate in a fully automated mode in certain situations would 
limits its attractiveness for private owners and taxi fleet operators. However, Level 4 could be 
quite useful for transit applications. 
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Fully automated operation of Level 4 vehicles in protected lanes could be very useful for 
public transit. Since bus networks tend to occupy a relatively small fraction of the total road 
network, a fleet of automated buses could derive large benefits by providing protected lanes 
on a small fraction of the total road network, in contrast with private vehicles or taxis, which 
would generally derive smaller benefits from a sparse network of protected lanes. 

In general, various approaches to reducing risk in order to achieve fully automated operation 
with automated vehicles of limited capability are easier to implement for bus transit than for 
private vehicles. Risk can be reduced by controlling the environment, such as providing 
protected lanes, ensuring road paint is well-maintained, equipping infrastructure for V2I 
applications, ensuring 3D maps are up to date, and so on. All of these measures would be 
easier to implement on a limited network of bus routes or lanes than on the overall network of 
roads in a city. 

As it seems likely that much of the potential attraction of driverless taxi service would derive 
from the potential for door-to-door service between a wide range of origins and destinations, 
driverless taxis are likely to require Level 5 automation in order to provide very attractive 
service. However, driverless taxis with Level 4 automation could serve short trips in more 
restricted settings, for example, in areas with low speed limits and other restrictions on 
potential driving hazards, and in particular, for trips that cannot be served well by walking or 
cycling. 

LEVEL 5 

Private owners 

Level 5 would be very attractive for private owners, since it would allow a traveler to 
completely forget about driving and engage in other activities, such as watching movies, 
sleeping, etc. The ability to park remotely could also be very attractive for individuals who 
travel to areas where inexpensive parking is in short supply. 

Level 5 vehicles especially could be attractive for those less able or unable to drive, such as 
elderly people and people with reduced physical mobility. Such technology could allow for 
increased independent mobility. Parents could also value it for shuttling their kids around. 

Drivers who particularly enjoy driving would be less attracted to automation. However, while 
many people enjoy driving, it seems probable that most would prefer the kind of mythic 
driving adventure on the open road commonly depicted in automobile commercials – there 
are probably relatively few who cherish the act of driving itself in a daily commute through 
heavy traffic, for example. Most drivers who claim to enjoy commuting by motor vehicle might 
more particularly appreciate the private time their commute affords them, for example, rather 
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than the act of driving in a commuting context, per se. On this note, some private owners 
may be especially attracted to cars that can function in a fully automated mode, but can also 
be operated in a manual mode, allowing them to choose to drive in more enjoyable situations.  

Fleet owners 

Fleet owners are likely to adopt Level 5 vehicles more rapidly than private owners, for several 
reasons. 

• The elimination of driver labour produces greater benefits for fleet owners than private 
owners. The elimination of labour results in free time and greater convenience and 
comfort for private owners, while it results in direct monetary savings for fleet owners, 
which are arguably a stronger incentive. 

• Fleet vehicles are generally used more intensively used than private vehicles, so fleets are 
refreshed more rapidly than vehicles owned by private individuals. 

• Fleet owners could also benefit from economies of scale by purchasing numerous 
vehicles at reduced costs. 

• Cost savings from improved performance due to automation – faster travel, improved trip 
time reliability, increased safety, less vehicle downtime for maintenance, and especially 
reduced labour costs – are more directly monetized for fleet owners than for individuals. If 
automation facilitates even relatively small energy savings, fleet owners would have a 
significant incentive to adopt automation to reduce energy costs, while private individuals 
would likely need relatively larger savings to incentivize adoption. 

• Automated vehicles in fleets may be more likely to undergo regular and quality 
maintenance than privately owned automated vehicles. 

Taxi fleet owners 

Level 5 would be very attractive for taxi companies as it would enable them to cut labour 
costs – driver wages make up the majority of their operating costs. The reduced labour costs 
would enable them to provide lower-cost service and expand their service offerings. 

This discussion of taxis also applies to car-sharing services. If non-automated vehicles are 
replaced with Level 5 vehicles, taxi and car-share services effectively converge to the same 
service – driverless taxis and car-share vehicles would both provide trips without human 
drivers and reposition themselves to the next travelers without human drivers. 

The elimination of driver labour costs in taxis would enable major reductions in taxi fares – 
perhaps down to a third of present levels (Fagnant and Kockelman, 2015c; Gilbert, 2013) – 
thus increasing demand for travel by driverless taxi and stimulating more rapid adoption. 
Gilbert estimates that a driverless taxi could provide a 5 km journey at an average speed of 
30 km/h for $3, in 2013 dollars, which would be about the same as transit fare for a single 
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passenger, and a 10 km journey would cost $5. His estimates are based on an assumption 
that Level 5 vehicles will cost no more than non-automated vehicles (Gilbert, 2013). 

However, especially when Level 5 technology is newly on the market, the price of the 
technology may be high; as a result, it may not be possible to significantly reduce taxi fares, 
and driverless taxi fleets may grow slowly. The supply of driverless taxi trips would be limited 
and fares would still be relatively high, in which case there would be relatively low levels of 
driverless taxis ridership at first. 

Adoption could be more rapid in taxi fleets than for private individuals, for the reasons 
discussed above. 

A number of commentators, such Richard Gilbert, a transportation consultant in Toronto, 
argue that driverless taxis will eventually be a dominant form of urban travel (Gilbert, 2012). 
The door-to-door service of driverless taxis would provide the convenience, comfort and 
privacy of private vehicle travel, without the hassle of parking. And travelers could choose 
from a variety of vehicle types (as is true today for some carsharing programs), all of which 
could offer enhanced vehicle interiors that take advantage of the lack of need for a driver. 
These myriad attractive features, combined with lower fares thanks to the elimination of 
labour costs for human drivers, could make driverless taxis attractive for many users. 

Gilbert argues that when automated systems become common, a Level 4 automated vehicle 
would cost no more than a non-automated vehicle because of reduced insurance and 
operating costs, as well as reduced vehicle manufacture costs thanks to reduced need for 
safety features and human operator controls. If this argument is correct, then the comfort, 
convenience, and low cost of driverless taxis could reduce incentives for people to own their 
own private vehicles. 

Since each driverless taxi would provide many trips to many individuals over the day, a 
relatively small fleet could serve a population. Researchers from MIT concluded that all trips 
currently taken in Singapore, including those now taken by transit and other modes, could be 
served by a fleet of taxis that is approximately one-third the number of passenger vehicles 
currently in use; expressed in other terms, only one taxi for every 4 households would be 
needed (Spieser et al., 2014)(Zhang, 2016). However, because the estimate did not take into 
account congestion effects, it is not reliable. In the modeled scenario, the number of vehicles 
on the road at any given moment would be much higher than now – currently, most 
Singaporeans use public transit. When road capacity limits are taken into account, it can be 
seen that driverless taxis would be most useful in areas of lower population density; high 
passenger-capacity vehicles like buses and trains will still be needed in areas with dense 
spatio-temporal clustering of trips. 
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Researchers from MIT also modeled how automated taxis could replace human-driven taxis 
in Manhattan (Zhang, 2016). They found that all taxi trips could be served with a fleet 70 
percent the size of the current taxi fleet. It is notable that this finding is far less dramatic than 
the finding for Singapore. The researchers also studied the congestion effects of the 
automated taxi fleet in Manhattan, and found that repositioning of empty taxis would not 
greatly increase congestion. In another study, MIT researchers found that this “rebalancing” of 
the fleet could substantially reduce the required fleet size. They found that all trips other than 
subway and bus trips could be served by approximately 35,000 taxis, but this number would 
drop to 24,000 if rebalancing was performed (Marczuk et al., 2016). 

Modeling by the International Transport Forum (ITF) (International Transport Forum (OECD), 
2015) found that in a scenario where 8 percent of trips in Lisbon are taken by walking or 
biking, 0 percent are taken on transit, and 92 percent are taken by single-passenger 
driverless taxis, the number of taxis needed would be less than a quarter of the number of 
cars currently in use. However, the total VKT in the city would more than double. Despite this, 
the authors reported that travel times would be slowed very little. This resulted from an 
assumption that currently, less than 40 percent of available capacity on Lisbon’s roads is in 
use during peak periods; this means that there is sufficient road capacity to allow for a huge 
increase in VKT. It is open to question whether this assumption is accurate, considering the 
authors’ caution that they do not account for bus travel, which makes up 13% of VKT in 
Lisbon. This could lead to an overestimate of the potential for roads in the network to absorb 
additional traffic. In addition, according to the TomTom Traffic Index, congestion may already 
be an issue in Lisbon, as travel times during peak periods are currently 45% to 70% longer 
than they would be under free­flow conditions. In any case, the authors’ explanation that little 
congestion results in their model supports the following interpretation of the above findings: 
single-passenger driverless taxis could serve a very large proportion of trips, but only where 
the roads have the capacity to absorb potentially huge increases in traffic without becoming 
congested. 

The researchers also observed that the largest increases in traffic occurred on local streets. 
The authors caution that this could make them less attractive places to live. This point 
deserves emphasis: while the results of the model suggest that currently lightly-traveled roads 
could absorb additional traffic, many streets serve important purposes beyond being conduits 
for cars, such as providing facilities for walking and cycling, or serving as public spaces. It is 
important to consider the impacts of increased motor vehicle traffic on these kinds of uses. 

The ITF researchers considered other scenarios. For example, in a scenario where 22% of 
trips go by subway, 8% go by foot or bike, and the remaining 70% go by driverless share 
taxis of various sizes carrying up to 8 passengers each, the model estimates peak period VKT 
would rise by 9 percent. Taxis serving multiple rather than single passengers would also 
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reduce the required fleet size. Parking demand would also drop: the researchers estimated 
that almost 95% of all parking spaces in Lisbon could be eliminated. 

Fagnant and Kockelman modeled the impact of automated taxis in Austin, Texas, at a low 
level of adoption. The taxis were assumed to serve 1.3 percent of trips within the study area. 
According to the model, which considered travel speeds that varied by time of day, one 
automated taxi could replace about 9 conventional vehicles, when trips that originate from or 
are destined to locations outside the study area are excluded (Fagnant and Kockelman, 
2015b). Chen et al. (Chen et al., 2016) studied a similar network and considered the effects of 
the limited driving range of battery electric vehicles and the need to recharge. The authors 
found that each electric automated taxi could replace between 5 and 9 privately owned 
vehicles, depending on battery range and charging speed. 

Other studies have found roughly similar reductions in the number of vehicles needed to serve 
trips. A simulation of Berlin found that, if trips that started or ended outside the study area 
were excluded, if all trips currently served by cars were instead served by automated taxis, a 
fleet of 90,000 to 100,000 would be sufficient. This means that each taxi could replace 10 to 
12 private cars. The researchers found that the total time vehicles were in motion increased 
by 17 percent, but did not expect congestion to result under the assumptions that traffic 
flows would be smoother and cruising for parking would be eliminated (Bischoff and 
Maciejewski, 2016). In addition, a study of the Zurich region found that one automated taxi 
could replace up to ten private cars (Boesch et al., 2016). 

As can be seen, studies have generally suggested that widespread use of automated taxis 
could result in large increases in VKT. One simulation study, examining the city of Sioux Falls, 
Dakota, examined the mode choice effect of single-passenger automated taxis and the 
resultant travel impacts. Assuming that fares for automated taxi service would be $0.85 per 
mile, and a fleet of 1000 taxis was available, around 37 percent of travelers would opt to 
travel by taxi, and VKT would increase by up to 60 percent (Hörl, 2016). It is possible that this 
figure would be reduced if, after taxis repositioned themselves after completing trips to areas 
where new demands are anticipated. 

A study of the Stockholm area found that if single-passenger automated taxis serve all trips 
within the study area (excluding trips with origins or destinations outside the area), VKT would 
increase by 24 percent over a scenario where private cars serve all trips. However, the 
researchers found that in a scenario where up to four passengers at a time travel together in 
share taxis, VKT would be reduced by 11 percent compared to the private car scenario. The 
authors treated travel speed simply in their modeling by assuming that all link speeds were 75 
percent of their free-flow speeds (Burghout et al., 2015). 
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Transit fleet owners 

There are several factors that favour the adoption of automation in heavy vehicles in general 
(Shladover, 2009b).  

• The absolute cost of automation technologies in light and heavy vehicles would be similar, 
so it would be a smaller fraction of the total cost of heavy vehicles.  

• Heavy vehicles are generally more intensively used, so the cost of the technology would 
be amortized more quickly. 

• Heavy-duty vehicles would experience significant energy savings through platooning since 
the aerodynamic improvements are more significant for large vehicles. 

• Because the absolute capital cost of automation technologies would be similar for light-
duty vehicles and heavy-duty vehicles, the technologies would make up a smaller fraction 
of the total vehicle cost for heavy-duty. 

Labour savings and other operational benefits of automation would also be very attractive to 
bus transit fleet operators. Transit buses have the highest hourly operating costs and the 
most intensive utilization of any vehicles on the road (Shladover, 2009a), so the prospect of 
labour cost savings and other operational cost savings would be very attractive for transit 
operators (especially for transit agencies in the developed world, where labour costs are 
higher). Public transit is labour-intensive, and costs for drivers, mechanics, and other 
personnel account for approximately 60 percent to 80 percent of operating costs (Anderson, 
1986; Hemily and King, 2008; Hinebaugh, 2009). 

8.3 Other factors influencing adoption 

If subsidies for automation technologies are provided, this would speed adoption. Subsidies 
could include subsidies for capital costs, or subsidies for operating costs, such as reduced 
insurance rates and road pricing. 

Adoption of automation will be influenced by the level of provision of infrastructure. If 
automated vehicles have prioritized access to special infrastructure, such as exclusive lanes, 
this may enhance their benefits to users, and could speed adoption, especially for lower 
levels of automation, such as Level 2 and 3. For example, dedicated lanes could enable fully 
automated operation by Level 2 vehicles. On the other hand, if automated vehicle operation is 
restricted to special infrastructure, adoption will be limited by the provision of this 
infrastructure.  

If automated vehicles are required to undergo frequent inspection and maintenance, this 
could be a disincentive for private owners; this may be less of a disincentive for fleet owners 
who could undertake inspections and maintenance more efficiently. If special driver training is 
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required for the operation of vehicles with lower levels of automation to ensure drivers 
understand their new duties when operating vehicles with partial automation, this would also 
tend to be a disincentive for private owners, but again, this would likely be less of a 
disincentive for fleet owners with professional drivers, where training could be provided more 
efficiently. 

Finally, competition between different technologies would influence adoption rates and levels 
– for example, high levels of adoption of Level 3 technology could reduce the levels of 
adoption of Level 5 automation. In general, it is reasonable to expect that the rate of adoption 
of lower levels of automation will slow when higher levels of automation emerge onto the 
market, since the higher levels with their more comprehensive capabilities would be more 
attractive for many users. When the higher levels first emerge, their capital costs would likely 
be high, but as their costs drop, they would eventually become more attractive.  

8.4 Timelines of adoption 

PREDICTIONS 

A range of views have been expressed regarding likely rates and levels of adoption of vehicle 
automation once these technologies become available to the general public. In 2012, the 
Institute of Electrical and Electronics Engineers (IEEE) released a statement containing the 
assertion that “autonomous vehicles… will account for up to 75 percent of cars on the road 
by the year 2040” (IEEE, 2012). According to a report from the market research firm Navigant 
Research, Level 5 vehicles will emerge onto the market in 2020, and by 2025, will comprise 
75 percent of worldwide light-duty vehicle sales (Alexander and Gartner, 2013). Lutin et al. 
contend that Level 5 automated vehicles could reach market penetration levels of 11 to 34 
percent in five years and 22 to 59 percent in ten years (Lutin et al., 2013). The market 
research firm Strategy Analytics predicts a slower rate of adoption, where Level 4 vehicles 
that “offer significant support to drivers in multiple different driving situations” and that will at 
first only operate in fully automated mode “in certain situations – such as highway driving – or 
in areas with a certain degree of V2X support”, will have a market share of around 15 to 20 
percent globally by 2025 to 2030, while the number of more advanced automated vehicles, 
presumably Level 5, will be “in the low single figure percentages” (Riches, 2013). The 
consulting firm McKinsey & Co. speculates that after technological and regulatory issues are 
resolved, up to 50 percent of passenger vehicles sold in 2030 will be “highly autonomous” 
and 15 percent “fully autonomous” (McKinsey & Co., 2016)(Gao et al., 2016). Steve 
Underwood of the Center for Automotive Research estimates that Level 3 technology will be 
in 70 percent of vehicles sold within ten years of its emergence on the market, by about 2030 
(Underwood, 2013).  
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Todd Litman of the Victoria Transport Policy Institute predicts that in the 2040s, Level 5 
vehicles will likely represent 50 percent of vehicle sales and 30 percent of vehicles on the 
road, and by the 2050s, would become the majority of vehicles on the road (Litman, 2014). 
He notes that modern vehicles have increasingly long operating lives, with current models 
likely operating for 20 years or more. According to the market research firm IDC 
Manufacturing, new cars are being purchased at a slower rate than previously and the 
average age of vehicles on the road is increasing, and is currently 11.2 years (Brennan, 2013). 
If these trends continue, the adoption of new vehicle technologies may be slowed. 

A simulation by researchers from the University of Texas at Austin (Bansal and Kockelman, 
2016) concluded that if Level 5 vehicles emerge onto the market immediately, and if their 
price drops by 5 percent every year (from a premium of $40,000 in 2015 to less than $9000 
in 2045), approximately 25 percent of the overall fleet of light-duty vehicles will be Level 5 
vehicles in 2045; while in a more aggressive scenario where their price drops by 10 percent 
every year (from a premium of $40,000 in 2015 to around $1700 in 2045) and consumers’ 
willingness to pay for the technology increases by 10 percent ever year, approximately 87 
percent of the fleet of light-duty vehicles would be Level 5 in 2045. 

A study by Lavasani et al. (Lavasani et al., 2016) examined the adoption patterns of previous 
technologies, such as hybrid electric vehicles, cellphones, and internet, and developed a 
model to estimate adoption of automated vehicles. They found that, if Level 5 automated 
vehicles become available in 2025, adoption to the point of market saturation, at 75 percent 
of households, may occur in 35 years. 
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PROJECTIONS OF ADOPTION RATES 

Given the range of estimates of adoption rates discussed above, it is useful to develop some 
simple projections to provide a frame of reference for comparison. Some simple projections 
are discussed below. 

 

Figure 14. Projected adoption of automated vehicles in Edmonton 

The curves in Figure 14 illustrate a range of trajectories of adoption of automated vehicles in 
Edmonton, from very rapid to moderate in pace. These hypothetical trajectories can be 
applied to any type of vehicle automation technology; for the present discussion, the 
trajectories refer to Level 5 light-duty vehicles. 
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The most rapid trajectory, illustrated by the red curve, illustrates how the overall fleet of light-
duty vehicles would comprise an increasing proportion of Level 5 light-duty vehicles, under 
the assumptions that, immediately after Level 5 vehicles become available on the market, 
every single new vehicle purchased is a Level 5 vehicle, and the survival rate of vehicles is the 
same as it was over the 10-year period from 2006 to 2015 in Edmonton – that is, vehicles of 
each model year are retired from the fleet at the same rate as they are currently. Under those 
assumptions, starting from the current distribution of vehicle ages in Edmonton 3 , the 
proportion of the overall fleet made up by Level 5 vehicles would increase to 50 percent in 
around 6 to 7 years; to 90 percent in around 18 years; and to 95 percent in around 30 years. 

A somewhat less rapid trajectory is illustrated by the black curve. This trajectory would occur 
under the assumptions that, after Level 5 vehicles become available on the market, they 
make up an increasingly large share of new vehicles purchased over an 8-year period, 
increasing from 20 percent in the first year to 100 percent in the eighth and subsequent years, 
and the survival rate of vehicles in Edmonton remains at the current rate. In this trajectory, the 
proportion of the overall fleet made up by Level 5 vehicles would increase to 50 percent in 
around 11 years; to 90 percent in around 22 years; and to 95 percent in around 30 years. 

A moderate trajectory is illustrated by the solid blue curve. In this trajectory, after Level 5 
vehicles become available on the market, they make up an increasingly large share of new 
vehicles purchased over an 18-year period, increasing from 10 percent in the first year to 100 
percent in the eighteenth and subsequent years, and the survival rate of vehicles remains at 
the current rate. In this trajectory, the proportion of the overall fleet made up by Level 5 
vehicles would increase to 50 percent in around 17 years; to 90 percent in around 30 years; 
and to 95 percent in around 36 years. 

Finally, a slow trajectory is illustrated by the dotted blue curve. In this trajectory, after Level 5 
vehicles become available on the market, they make up an increasingly large share of new 
vehicles purchased over an 8-year period, increasing from 10 percent in the first year to a 
plateau of 50 percent in the eighth and subsequent years, and the survival rate of vehicles 
remains at the current rate. In this trajectory, the proportion of the overall fleet made up by 
Level 5 vehicles increases to 25 percent in around 16 years, and to 45 percent in around 40 
years. 

                                                   

 

 

3 Vehicle population statistics were sourced from the Alberta Registries Motor Vehicles Division. 
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Some factors could result in slower or faster rates of adoption than illustrated in these models. 
For example, if vehicles have longer lifespans, the turnover rate of the overall fleet would be 
lower, and thus the rate of adoption would be slower. On the other hand, it is possible that 
many individuals would find Level 5 vehicles highly attractive and would therefore choose to 
retire their non-automated vehicles (or vehicles with lower levels of automation) earlier, thus 
accelerating adoption rates. Adoption of Level 5 vehicles by taxi fleet owners could also 
accelerate the overall adoption rate, since taxis would be used more intensively than privately 
owned vehicles and would thus result in higher turnover rates. In addition, labour cost savings 
would likely make Level 5 strongly attractive for taxi fleet owners, and fleet owners could also 
benefit from discounted rates on purchases of large numbers of vehicles. 

Though it is not certain how rapidly automated vehicles will be adopted, the simple models 
above broadly indicate that an extremely rapid rate of adoption would mean Level 5 light-duty 
vehicles would make up a large majority of the overall fleet of light-duty vehicles on the road 
within 15 to 20 years after their emergence onto the market, whereas more moderate 
trajectories that assume less extreme but still rapid rates of uptake suggest that it could take 
30 years or more for Level 5 vehicles to become a large majority of the overall light-duty fleet 
on the roads. These points are important to consider, since many of the impacts of 
automated light-duty vehicles would only become significant at higher levels of diffusion. 

Predictions have also been made regarding the rate of adoption of V2X. The automotive 
consultancy SBD forecasts that 50 percent of new vehicles worldwide will be fitted with V2X 
by 2020, and 90 percent by 2025 (SBD, 2012). The American Association of State Highway 
and Transportation Officials has suggested that the portion of the US light vehicle fleet 
equipped for V2X could reach 30 percent by 2023 and 70 percent by 2029 (Christopher J. 
Hill and Garrett, 2011). It should be noted that the adoption of V2X could be hampered by a 
critical mass problem, in the case of V2V, and by a chicken-and-egg problem, in the case of 
V2I. The value of V2V is determined by the level of adoption – at low adoption levels, V2V will 
provide very little benefit for the user of the equipped vehicle, since a V2V system can only 
“see” other equipped vehicles. The value of V2I is determined by the presence of 
infrastructure equipped for communications. Until a significant amount of infrastructure is 
equipped, a V2I vehicle will derive little benefit from its communication abilities (Stiller, 2010). 
Because of these challenges, V2X may require additional incentives, such as subsidies, or 
mandated implementation, to speed adoption.  
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9. Qualitative analysis of impacts in 
Edmonton 

9.1 Future scenarios selected for analysis 

The future impacts of automated vehicles depend on what kinds of automation technologies 
are available and how they are adopted. For the purposes of discussion, a qualitative analysis 
of four scenarios describing hypothetical conditions in Edmonton in 2047 is presented here. 

The scenarios are based on combinations of two main variables: 

• Level of diffusion of automated vehicles, of particular SAE levels of automation, resulting 
from different dates at which various levels of automation emerge onto the market and the 
rates at which they are adopted 

• Quality of transit service provided, resulting from different extents to which the City 
deploys automation in public transit to improve service 

Regarding the level of diffusion of automation, two different states are assumed: 

1. Widespread diffusion of advanced automation (early emergence and rapid adoption of 
advanced automation) 

• Level 5 becomes available on the market in 2020 and is adopted rapidly (as illustrated in 
the solid red curve in the graph at the end of the document) 

• Resulting composition of the overall fleet of light-duty vehicles in 2045: 
o Level 5: 90% 
o Level 0: 10% 
o Driverless taxis are widely available 

2. Moderate diffusion of less advanced automation (later emergence and moderate adoption 
of less-advanced automation) 

• Level 3 becomes available on the market in 2020 and is adopted at a modest pace (as 
illustrated in the dotted blue curve at the end of the document) 

• Resulting composition of the overall fleet of light-duty vehicles in 2045: 
o Level 3: 40% 
o Level 0: 60% 
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Regarding the quality of transit service provided, two different states are assumed. The 
precise definition of these states should be discussed. 

A. Base level of service 

This reflects a “business as usual” approach where transit frequency, capacity, network 
coverage, fares, and other relevant factors are similar to what they are currently. 

B. Improved level of service 

This state of transit service should reflect increased investment in transit, especially through 
the proactive deployment of available automation technologies to improve transit service, with 
respect to frequency, capacity, network coverage, and fares. 

The four resulting scenarios are: 

• Scenario 1A: widespread diffusion of advanced automation + base level of transit service 
• Scenario 1B: widespread diffusion of advanced automation + improved level of transit 

service 
• Scenario 2A: moderate diffusion of less advanced automation + base level of transit 

service 
• Scenario 2B: moderate diffusion of less advanced automation + improved level of transit 

service 

In the first two scenarios, Scenarios 1A and 1B, it is assumed that advanced automation 
technologies emerge very early and are adopted very rapidly. In particular, it is assumed that 
Level 3 vehicles are available on the market in 2018 and Level 5 vehicles are available in 2020. 
In addition, it is assumed that driverless taxis have become commonplace. In the first of these 
two scenarios, public transit investments are given low priority; automation is not deployed 
proactively in transit and service remains near current levels. In the second of these two 
scenarios, public transit investments are given high priority; automation is proactively 
deployed in transit to provide improved service. This includes Level 4 and 5 buses and Level 
4 low-speed vehicles.  

In the second two scenarios, Scenarios 2A and 2B, it is assumed that advanced automation 
technologies emerge later (though not as late as some experts predict) and are adopted at a 
moderate rate. In particular, it is assumed that Level 3 vehicles are available on the market in 
2020 and Level 5 vehicles are available in 2040. In the first of these two scenarios, public 
transit investments are given low priority; service remains near current levels. In the second of 
these two scenarios, public transit investments are given high priority; automation is 
proactively deployed in transit to provide improved service. This includes Level 4 buses and 
low-speed vehicles. 
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The four scenarios are summarized in Table 1 below. 

  DEPLOYMENT OF AUTOMATION IN TRANSIT 

  Base level Improved level 

DIFFUSION 
OF LEVEL 3 

AND LEVEL 5 

Widespread 

• Level 3 on the market in 
2018, Level 5 in 2020 

• Driverless taxis are common 
• Level 4 LSVs, Level 4 & 5 

bus technology is available 
but not widely deployed 

• Level 3 on the market in 
2018, Level 5 in 2020 

• Driverless taxis are 
common 

• Level 4 LSVs, Level 4 & 5 
buses widely deployed 

Moderate 

• Level 3 on the market in 
2020 

• Level 4 LSV and bus 
technology is available but 
not widely deployed 

• Level 3 on the market in 
2020 

• Level 4 LSV and bus 
technology widely 
deployed 

Table 1. Summary of scenarios. 

 

The analyses presented below discuss the likely travel and land use impacts of future vehicle 
automation technologies in the four scenarios. 
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9.2 Travel behaviour 

VEHICLE OWNERSHIP 

Scenario 1A: widespread diffusion of advanced automation + base level of transit service 

Many individuals would be attracted to own Level 5 vehicles, including individuals who cannot 
or do not typically drive, such as elderly people and people with limited physical mobility, who 
would be attracted by the possibility of independent travel by motor vehicle. These increases 
could be significant: about 13 percent of those of driving age in the US lack a driver’s license 
(FHWA, 2011). In addition, some parents may be attracted to own a Level 5 vehicle to 
chauffeur their children. 

Meanwhile, as driverless taxis emerge, and as fares decrease and taxi fleets increase in size, 
some individuals would opt out of owning their own vehicles, preferring the overall balance of 
private costs and benefits of travelling by driverless taxi. Some of these individuals may 
choose to use a greater diversity of modes for different trips than they would have otherwise, 
taking some trips by taxi, some by transit, and others by foot, for example.  

While the comfort, convenience, and low cost of driverless taxis could reduce incentives for 
people to own their own private vehicles, for some individuals, the convenience and 
assurance of having a private vehicle that is always available for spontaneous trips, without 
delay, and the opportunity to have full control over the private space of their own vehicle 
would nevertheless be very attractive.  

Scenario 1B: widespread diffusion of advanced automation + improved level of transit 
service 

Level 5 private vehicles and driverless taxis would still be attractive in the scenario where 
transit service is improved via the proactive deployment of automation; however, 
improvements in transit service frequency and network coverage and reductions in fares 
would lead some individuals to opt for transit use, or transit use complemented with 
driverless taxi use, over private vehicle ownership. 

Scenario 2A: moderate diffusion of less advanced automation + base level of transit 
service 

Level 3 would attract private ownership, but this attraction would be moderate because the 
technology which would require a substantial level of human driver involvement. 
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Scenario 2B: moderate diffusion of less advanced automation + improved level of transit 
service 

The attractiveness of Level 3 just mentioned would be further moderated in a scenario where 
transit service is substantially improved. 

MODE SHIFTS 

Scenario 1A: widespread diffusion of advanced automation + base level of transit service 

The decreased generalized cost of travel (Litman, 2013) by private vehicle will incentivize 
owners of automated vehicles to travel by private vehicle where they would otherwise have 
travelled by other modes. This effect would be larger with the higher levels of automation, and 
would also be larger where infrastructure such as dedicated lanes is provided for automated 
vehicles. 

Most of the potential mode shift to private vehicles would likely come from public transit 
rather than from walking or cycling, since the decreased generalized cost of vehicle travel 
would be more significant for longer trips. For the same reason, it would be likely that a 
greater number of long transit trips rather than short transit trips would shift to private vehicles. 
It would also be likely that relatively large mode shifts would occur in low-density areas or 
other areas with relatively poor transit service. 

There would be limited incentive to shift to private vehicle travel from walking and cycling, 
since the generalized cost of travel would remain low for shorter walking and cycling trips, 
except for older individuals. Many travelers would still find walking or cycling to be convenient 
and in many cases to be more enjoyable than other modes. 

After driverless taxi fares decrease to a sufficiently low level, they could stimulate an increase 
in taxi trips. Individuals would take some trips by taxi that they would have otherwise taken by 
private vehicle, transit, walking, and cycling. Much of this shift would be likely to come from 
transit and private vehicles, since walking and cycling would still be attractive for shorter trips. 
In addition, some of the shift to travel by taxi would come from private vehicles. The total 
amount of trips taken by taxi would be limited by the size of the taxi fleet. The attractiveness 
of taxis would also be limited in more peripheral locations due to the costs of deadheading 
empty taxis. 
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Scenario 1B: widespread diffusion of advanced automation + improved level of transit 
service 

Improvements in transit service through the application of automation would tend to lead to 
increased ridership. Where buses are able to operate in platoons, with one driver leading a 
platoon of two or more buses, or where buses are otherwise able to operate in fully 
automated mode, capacity and/or frequency can be improved with minimal increases, or 
even with decreases in labour costs. Such improvements in service would tend to attract 
increased ridership, if they outpace reductions in the generalized cost of travel by other 
modes, such as private vehicle and driverless taxi. The generalized cost of travel by transit is 
most likely to be competitive with other modes for trips originating or ending in or near heavily 
travelled corridors. In these areas, it is more likely that transit service may be sufficiently 
frequent and rapid to compete with other modes, especially if dedicated busways are 
provided. If there is a significant shift toward travel by transit in these corridors, at the same 
time that there is a significant shift toward private vehicle travel or driverless taxi travel in low-
density areas, there may be an overall increase in transit ridership, if densities of trip origins 
and destinations in or near heavily travelled corridors are sufficiently high. 

Scenario 2A: moderate diffusion of less advanced automation + base level of transit 
service 

Level 3 private vehicles would attract increased mode share, though this effect would be 
moderate because of the limitations of the technology. In addition, because lower levels of 
automation can operate in automated mode mainly, or exclusively, on freeways or highways, 
when vehicles equipped with lower levels of automation are used for short trips, they will only 
be able to operate in automated mode for a relatively small fraction of the trip (since at least 
the beginning and ending of any trip takes place off the freeway network). Because of this, 
mode shifts to private vehicles with lower levels of automation would be relatively small for 
short trips and would instead occur predominantly for longer trips. 

Level 2 and 3 automation would have minimal impacts on driver labour costs, and would thus 
have minimal impacts on taxi fares and the level of supply of taxi service, and therefore would 
result in minimal mode shifts toward taxi travel. Low-speed Level 4 vehicles could operate on 
low-speed roads, attracting mode share for short trips. 

Scenario 2B: moderate diffusion of less advanced automation + improved level of transit 
service 

The application of Level 1, 2, and 3 automation to transit could improve various aspects of 
operations, such as reliability of trip times and ride quality. In addition, Level 4 buses, 
particularly in protected lanes, could reduce labour costs substantially and enable major 
improvements in service. Level 4 low-speed vehicles could operate on low-speed roads, 
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attracting mode share for short trips, and could especially be used to improve first mile/last 
mile access to higher-order transit. These improvements could result in substantial mode 
shifts to transit. 

INDUCED TRAVEL 

In all four scenarios, automation would tend to reduce the generalized cost of travel, which 
would lead some individuals to take trips by automated vehicle where otherwise they would 
have taken no trip. In addition, some trips that would have formerly been “chained”, with trips 
to multiple destinations bundled into one trip, would now be taken as separate trips. 

The decreased generalized cost of travel would lead some individuals to take longer trips than 
they would have otherwise taken. Marchetti’s constant, which posits that people tend to have 
a constant travel time budget (Marchetti, 1994), may need to be modified when referring to 
individuals traveling by automated vehicle, since travelers in automated vehicles, especially 
Level 5 vehicles, would be likely to have a greater tolerance for longer or more congested 
commutes. 

Automation in transit could also result in the generation of longer trips, where service 
improvements reduce the generalized cost of travel.     

Travelers would also be induced to change routes, for example, to take freeways where 
capacities are higher.  

Travelers in automated vehicles would shift some trips to peak periods, even where delays 
are not reduced, due to the reduced cost of travel time per unit time.  

One study examining the traffic impacts of automated vehicles, modified the four-step 
planning model to account for increased road capacities and intersection capacities (due to 
the use of reservation-based intersections) resulting from automated vehicle use (Levin, 2015). 
He found that the total number of trips in private vehicles almost doubled, due to these 
vehicles remotely parking at home. Nevertheless, the author found that the increases in 
capacity would “mostly offset or even improve network conditions”. Another study, which 
focused on the traffic impacts of automated vehicles up to Level 3 automation, found that 
unconnected automated vehicles would lead to a 6 percent increase in highway traffic during 
peak hours, while connected automated vehicles would lead to a 9 percent increase. In the 
latter case, it was assumed that connected automated vehicles would be capable of 
platooning. The authors note that they did not account for various effects that would further 
increase VKT, including increased trip lengths (Puylaert, 2016). 
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Scenario 1A: widespread diffusion of advanced automation + base level of transit service 

The induced travel effects just mentioned would be particularly strong in this scenario. 

Once the capital cost of the technology is sufficiently low, Level 5 would reduce the 
generalized cost of travel substantially, since the cost of travel time could be reduced greatly, 
and potentially even eliminated in some cases where travellers engage in particularly 
enjoyable or productive activities. This would encourage more trips and longer trips. In 
addition, non-drivers, such as seniors and people with limited physical mobility would be 
induced to take more trips and longer trips.  

With Level 5 automation, there is the additional potential for the generation of trips with no 
human occupant. Such zero-passenger VKT would include empty driverless taxis travelling 
from one passenger to the next and empty private vehicles travelling to remote parking spots. 

When vehicles capable of platooning have been adopted widely enough that platooning leads 
to an increase in capacity on freeways, the reduced delays on freeways will attract drivers of 
both automated and non-automated vehicles to shift their routes to freeways. 

The increase in trip lengths would be largest for Level 5 vehicles, but could also be large for 
Level 3 vehicles, especially where these vehicles make trips that make extensive use of 
freeways and dedicated lanes.  

Where platooning leads to reduced delays, or where automation reduces non-recurrent 
congestion, delays during peak periods would in general be reduced as well, so travelers in 
both automated and non-automated vehicles would be induced to shift some trips to take 
place during peak periods. Similarly, automation in transit could improve service during peak 
periods, with reduced crowding, for example, and thus induce travelers to shift some trips to 
peak periods.  

Route choices would be affected; in particular, freeways or highways would be used more 
where dedicated freeway lanes for automated vehicles are provided. 

Scenario 1B: widespread diffusion of advanced automation + improved level of transit 
service 

In this scenario, the higher mode share of transit would result in smaller induced travel 
impacts than in the foregoing scenario. 
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Scenario 2A: moderate diffusion of less advanced automation + base level of transit 
service 

The induced travel impacts described above would be present in this scenario, but would be 
smaller than in the early emergence scenarios due to the limited capabilities of lower levels of 
automation. 

Drivers of vehicles with Level 2 and 3 automation would tend to use freeways or highways 
more often than they would in the absence of vehicle automation, in order to have a lower-
stress automated drive. In addition, where dedicated freeway lanes for automated vehicles 
are provided, especially where these lanes offer sufficient protection to facilitate fully 
automated operation of Level 2 or 3 vehicles, drivers of these vehicles would be incentivized 
to take routes that use these lanes for a portion of the trip.  

Scenario 2B: moderate diffusion of less advanced automation + improved level of transit 
service 

The induced travel impacts described in the foregoing scenario would be further mitigated in 
a scenario where transit service is substantially improved through the application of available 
automation technologies. 

PARKING 

In general, the increased ease of travel due to easier parking, or the eliminated need for 
parking, would tend to generate new trips, especially to destinations where parking is 
expensive or in short supply. In the case of Level 5, remote parking and driverless taxis would 
mean that the supply of parking no longer restricts trips to destinations, such as in downtown 
areas. This could especially lead to more trips to popular destinations, such as in downtowns. 
In addition, driverless taxis would tend to generate additional VKT where the taxis move from 
the last passenger’s destination to the next passenger’s trip origin. This, along with additional 
VKT generated by remote parking, would offset reductions in traditional “cruising for parking” 
(Shoup, 2006). Automated valet parking, by increasing the ease of parking, would also tend 
to decrease the generalized cost of travel and would thus lead to further increases in parking 
demand. 

One study has considered the impacts of remote parking. A modeling study of Melbourne 
examined the combined impact of shared taxis and privately owned automated vehicles that 
would drive themselves to park at the users’ homes after use. The researchers found that if 
75 percent of trips were taken in share taxis that can carry up to four passengers each, with 
the other 25 percent of trips taken by single-passenger private automated car, total VKT 
would be 29 percent higher than in a scenario where all trips are taken by manually driven 
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private cars (Javanshour et al., 2016). This is despite the sharing of the majority of trips in 
share taxis. The researchers explained that the increase in VKT was primarily caused by the 
private automated cars repositioning themselves. 

Scenario 1A: widespread diffusion of advanced automation + base level of transit service 

With Level 5 vehicles, a shift in parking locations could result as vehicles could drive 
themselves to park at remote locations. For example, a commuter could travel to work and 
then send their privately owned car back home to park. This remote parking could reduce the 
demand for parking in areas of high intensity land uses, such as downtown areas, where 
parking is expensive or difficult. Parking spaces could then be located more efficiently, further 
away from areas of high intensity land use. 

Remote parking would eliminate “cruising for parking” as it is currently understood, where a 
driver travels additional distance to find available parking, but it would also generate new trips 
where vehicles travel to remote parking locations. If these parking locations are distant from 
popular destinations, significant additional VKT could be generated. 

Parking demand could also be reduced as a result of automation. First, automated valet 
parking could allow cars to be parked more densely and thus increase the efficiency of use of 
parking space. 

Second, demand could be reduced by reducing vehicle idle time and by minimizing the size 
of the overall fleet of vehicles in cities. Large mode shifts to modes such as transit or 
driverless taxi, away from low-occupancy vehicle trips taken by private vehicle, could produce 
these changes. 

If there is a significant shift away from private vehicle use toward the use of driverless taxis, 
there would be less need for parking. Rather than parking their own vehicles, individuals 
would simply get out of their fully automated taxis, which would then drive off to pick up their 
next passengers. For example, Mitchell et al. argue that the time an automobile is parked 
could drop from 80 percent to 20 percent, reducing the need for parking spaces by a factor 
of four (Mitchell, 2010). They qualify this, saying that “[i]n practice this factor will be somewhat 
lower, since the demand for vehicles will be distributed unevenly throughout the day, and 
parking space must be sized to accommodate peak demand.” However, while a shift to 
driverless taxis could result in a significant reduction in peak demand for parking, this effect 
could be smaller if trip patterns become more temporally peaked, that is, with more trips 
being taken during peak periods and fewer during off-peak periods. 

In addition, while there may be less need for parking to be located very close to destinations, 
there could be an increased need for areas where travellers could be dropped off or picked 
up. 
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Scenario 1B: widespread diffusion of advanced automation + improved level of transit 
service 

In a scenario where transit mode share increases as a result of improved service, the remote 
parking phenomenon would be mitigated. Parking demand would also be reduced to a 
greater degree than in the foregoing scenario, due to the higher number of trips being served 
by vehicles with high passenger capacities. 

Scenario 2A: moderate diffusion of less advanced automation + base level of transit 
service 

Level 2 and 3 vehicles would tend to simply increase parking demand due to the increase in 
trips that would result from the lower generalized cost of travel. This effect would be 
moderate due to the moderate decreases in the generalized cost of travel produced by these 
levels of automation. 

Scenario 2B: moderate diffusion of less advanced automation + improved level of transit 
service 

The increase in parking demand present in the foregoing scenario would be mitigated in a 
scenario where transit mode share is increased as a result of improved service.  
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9.3 Land use 

LOCATION CHOICE 

As automation changes the generalized cost of travel, the resulting changes in accessibility 
and property values would affect residential and firm location choice. 

In general, automation in light-duty vehicles would make suburban and exurban locations 
more accessible. Users of privately owned automated vehicles and driverless taxis would 
experience incentives to choose residential locations that are more distant from their jobs or 
other activities, and that are particularly accessible by freeway, where those residential 
locations offer lower-cost housing or other perceived benefits.  

Where dedicated lanes are provided, users of automated vehicles would experience an 
incentive to choose residential locations that are more accessible by dedicated lanes.  

When automation reaches sufficiently high levels of adoption, it would also influence firm 
location choice. Automation would provide firms an incentive to choose locations more 
distant from their customers, employees, or other firms they do business with. These effects 
would result both from automation in light-duty vehicles and in buses. Where automation is 
deployed in buses in particular, firms would be incentivized in particular to choose locations 
that are accessible by transit. These locations would tend to be in or near heavily traveled 
transit corridors. 

Scenario 1A: widespread diffusion of advanced automation + base level of transit service 

Level 5 vehicles would produce very strong incentives for individuals to choose residential 
locations that are more peripherally located. Level 5 could also facilitate seniors in suburban 
areas “aging in place”. 

If remote parking becomes a popular practice, a significant shift in the location of parking 
demand could result, bringing a substantial increase in parking demand in lower-density 
areas. 

Scenario 1B: widespread diffusion of advanced automation + improved level of transit 
service 

If public transit service is improved through the deployment of automation, transit users would 
be incentivized to choose residential locations that are accessible by these higher quality 
transit services. Users of improved transit services would be incentivized to choose residential 
locations accessible by these services, which would likely be in heavily travelled corridors.  
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Since automation is particularly suited to applications in BRT busways, it is likely that many of 
the service improvements resulting from automation would take place along more heavily 
travelled corridors. This means there would be an incentive for transit users to locate near 
these more heavily traveled corridors. 

Scenario 2A: moderate diffusion of less advanced automation + base level of transit 
service 

 Lower levels of automation would also tend to encourage more dispersed location choice, 
but the effects would be more limited than with Level 5, due to the smaller impacts on the 
generalized cost of travel. 

Scenario 2B: moderate diffusion of less advanced automation + improved level of transit 
service 

The tendency to encourage more dispersed location choice described in the foregoing 
scenario would be mitigated further in a scenario where transit mode choice is increased due 
to service improvements. 

CHANGES IN LAND CONSUMED BY TRANSPORTATION INFRASTRUCTURE 

Due to changes in the efficiency of use of transportation infrastructure and the associated 
changes in travel patterns, the emergence of automation will present opportunities to change 
the provision of transportation infrastructure, such as roads and parking. These changes in 
land consumed directly by transportation infrastructure would in turn present new 
opportunities and needs for changes in land use. 

When automation is sufficiently widely adopted, capacities on some roads could increase 
significantly. This could allow for the removal of conventional freeway lanes. The land could 
be used for busways or for other modes, or could be used for greenspace or development. 
Similar changes could be made on other roads, with automation facilitating lane conversions 
and road diets on arterials and streets.  

Where automation results in reduced parking demand, such as where significant mode shifts 
toward transit and/or driverless taxis occur, former parking lots and roadside parking spaces 
could be converted to other uses, such as development, sidewalk, bike facilities, or 
greenspace. Similarly, remote parking of private vehicles would tend to lead to a shift of 
parking from intensely developed areas to less intensively used, less central areas. Some 
former parking lots or roadside parking spaces would become available for other uses, such 
as development or greenspace (Walker, 2016). These changes would allow for infill 
development, which could encourage more short trips taken by walking and cycling 
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(Bamonte, 2013). Park-and-ride parking lots could be eliminated and transit-oriented 
development around transit stations could be intensified. 

However, remote parking would also result in land in other neighbourhoods being consumed 
by new parking facilities. 

Scenario 1A: widespread diffusion of advanced automation + base level of transit service 

After Level 5 emerges, if it is widely adopted in private vehicles and driverless taxis, the 
incentives for dispersed development would increase. However, these tendencies would be 
mitigated somewhat by new opportunities for infill development and denser, more pedestrian-
oriented land use patterns that would allow travelers to access a greater number of 
destinations in relatively short trips that use modes such as walking and cycling. These shifts 
would tend to mitigate the tendency to dispersed development. 

Scenario 1B: widespread diffusion of advanced automation + improved level of transit 
service 

Where automation is deployed in public transit, the tendency toward dispersed development 
would be mitigated, and there would be an increased incentive toward development along 
transit corridors and in transit-oriented developments. Automation in transit could also lead to 
additional opportunities for infill development. 

Scenario 2A: moderate diffusion of less advanced automation + base level of transit 
service 

In this scenario, there would be little potential for improvement in road capacities; thus, it is 
unlikely that there would be significant new opportunities for reductions in the supply of roads. 

In addition, Level 2 and 3 automation would tend to increase parking demand, which could 
lead to the creation of additional parking facilities. 

Scenario 2B: moderate diffusion of less advanced automation + improved level of transit 
service 

In this scenario, substantial mode shifts to transit could occur, producing new opportunities 
for lane conversions and road diets.  
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10. Review of activities in selected 
cities 

In this section, recent, ongoing, and proposed actions relating to the testing and deployment 
of automated vehicles in selected cities around the world are reviewed. 

HELSINKI, FINLAND 

The SOHJOA project, a one-year test of fully automated low-speed electric shuttle buses, is 
currently underway in Finland, coordinated by the Helsinki Metropolia University of Applied 
Sciences. Easymile EZ-10 minibuses will be tested in Helsinki until mid-September 2016 
along a short section of several hundred meters of seaside public road in the Hernesaari 
district (EasyMile, 2016a)(Xinhua, 2016)(Yle, 2016)(Daily Mail, 2016). The vehicles will operate 
at a top speed of 11 km/h, and will accommodate up to six seated and six standing 
passengers. Additional testing will take place in the cities of Espoo and Tampere. Testing will 
stop when snowy weather begins, and will resume in spring 2017. 

VANTAA, FINLAND 

During the summer of 2015, EasyMile EZ10 vehicles were tested in the city of Vantaa (Minna 
Honkanen et al., 2013). Vantaa, located in the Helsinki metropolitan area, had a population of 
approximately 215,000 in 2015. The trial took place during the annual Finnish housing fair, 
which draws close to 200,000 visitors (Minna Honkanen et al., 2013)(EasyMile, 2016b). Four 
of the minibuses drove along a one kilometre route between the Kivistö railway station and 
the gates of the Housing Fair. The vehicles drove at a maximum of 13 km/h on a route that 
was fully segregated from other vehicles, cyclists, and pedestrians (Gilbert Koskela, 
2016)(Minna Honkanen et al., 2013)(EasyMile, 2016b). Service was provided free of charge. 

LAUSANNE, SWITZERLAND 

A fleet of six EasyMile EZ10 shuttles were tested in 2015 on the campus of the Swiss Federal 
Institute of Technology in Lausanne, Switzerland (EPFL) (EasyMile, 2015). The shuttles drove 
at a maximum speed of 15 km/h along a 1.5 km route between the north and south ends of 
the campus. The original intention was to connect the campus to a metro station, but the 
implementation was changed due to construction in progress. The route avoided roads with 
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heavy traffic, mostly running through pedestrian areas or roads used primarily by delivery 
vehicles (Cerottini et al., 2013). Service was provided from 7:45 am to 10 pm Monday 
through Friday. Riders had the option of making a request for a ride through a smartphone 
app. Close to 7,000 passengers used the shuttles during the five-month demonstration 
(Pessaro, 2016). 

SION, SWITZERLAND 

Testing of two electric automated 11-passenger Navya minibuses is being conducted in Sion, 
Switzerland, from 2016 through 2017. The vehicles are driving on public roads and in 
pedestrian areas in the old town tourist area at a maximum speed of 20 km/h. The vehicles 
do not have steering wheels, accelerators, or brake pedals. However, an attendant on the 
vehicle monitors operation and can stop the vehicle in an emergency; in addition, a remote 
operator can also stop the vehicle. The vehicles operate only in good weather and road 
conditions. The vehicles serve several stops, two of which are at fixed locations. One stop 
has a screen that displays the locations of the vehicles to users; users can also see the 
locations of the vehicles on a mobile app. The vehicles are wheelchair accessible. The public 
bus operator PostBus states that they intend to provide service to previously underserved 
areas, but do not intend to replace buses on existing routes with automated vehicles 
(PostBus, 2016a). The vehicles may later be brought into operation on other routes in the city 
of Sion (PostBus, 2016b). 

WAGENINGEN, THE NETHERLANDS 

Since 2015, EasyMile EZ10 buses, referred to as WEpods, have been undergoing testing in 
the cities of Wageningen and the Ede in the Netherlands (WEpods, 2016)(Campbell-
Dollaghan, 2015)(Murgia, 2015). The 12-passenger, wheelchair-accessible buses will drive a 
7-km route on public streets in mixed traffic between the intercity railway station at Ede-
Wageningen and the Wageningen University campus. Initially, the WEpods will not operate 
during bad weather, during heavy traffic, or at night. Operation will be monitored remotely by 
a technician at a control center (Gibson, 2015). Users will be able to arrange pick up and 
destination locations via an app. The routes will be gradually expanded during the test 
(WEpods, 2016). 

BRUSSELS, BELGIUM 

The Brussels airport plans to begin providing automated shuttle bus service at the airport in 
2018 (Ricardo Rail, 2015)(CityMobil2, 2016b). The buses would connect parking areas with 
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terminals, office areas, and cargo loading areas at speeds between 15 and 20 km/h. The 
target is to transport 250 passengers per hour per direction. 

TRIKALA, GREECE 

Six 10-passenger driverless shuttle buses were tested in the city of Trikala, Greece, over six 
months in 2015 and 2016 (CityMobil2, 2016c). The buses had a maximum speed of 20 km/h, 
and were monitored remotely by an operator in a control centre. The 2.4 km route followed a 
dedicated route, but no barriers were provided to positively exclude other traffic or 
pedestrians. 70 on-street parking spaces were removed to establish the lane, and a ban on 
parking was enforced during the hours the shuttles were in service. Seven traffic lights were 
modified or replaced to provide V2I-controlled signal priority (Raptis, 2016). Over 12,000 
passengers were transported during the trial (CityMobil2, 2016c). 

MILTON KEYNES, UK 

The Lutz Pathfinder, a small, light, low-speed, electric automated vehicle that carries up to 
two passengers has undergone testing in the UK. The town of Milton Keynes plans to test 
these vehicles, or a new generation of similar two-, four, and eight-seater vehicles known as 
Pod Zeros, along pedestrian pathways in the UK town of Milton Keynes (BBC.com, 
2015)(OneMK, 2016)(Dimmer, 2016). The vehicles would connect a train station to a 
shopping centre about a mile away. The vehicles have a top speed of 25 km/h, and will be 
monitored by attendants. 

SINGAPORE 

In 2015, the Land Transport Authority (LTA) of Singapore, in partnership with the developer of 
the technology and business park one­north, identified routes in one-north where testing of 
automated vehicles would be permitted. A 6 km network of roads with light to heavy traffic 
was selected. Interested groups were invited to apply to conduct testing in the specified area 
(Land Transport Authority, 2015). In 2016, the LTA announced that two groups, Delphi 
Automotive and nuTonomy, would begin testing their concepts for “shared, on­demand, 
door­to­door, first­and­ last­mile and intra­town self­driving transportation concepts” (Land 
Transport Authority, 2016). 

nuTonomy has begun to test six automated taxis. Invited members of the public can hail the 
test vehicles via smartphone (Associated Press, 2016). Rides must begin and end at 
designated locations (Illmer, 2016). A test driver rides in the driver’s seat to take over when 
needed, and a researcher in the back seat monitors the computers that control the car. The 
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company hopes to increase the fleet to a dozen by the end of the year (Associated Press, 
2016), and begin “limited commercial deployment where it makes sense and is safe” by 2018 
(Volpe, 2016). Service may first be expanded to a neighbourhood adjacent to one-north 
(Watts, 2016). 

Delphi Automotive is testing six automated versions of Audi SQ5s on three fixed routes. The 
company reportedly intends to phase out the use of test drivers in 2019 and begin providing 
taxi service throughout the city by 2022 (Ross, 2016b)(Wong, 2016a)(Lye, 2016). 

In addition to applications of automation in taxis, the government of Singapore has also 
expressed an intention to explore other applications of automation, such as driverless buses 
(Land Transport Authority, 2016)(GovInsider, 2016). 

A number of automated vehicle trials have taken place in Singapore in recent years. For 
example, in December of 2014, the Singapore-MIT Alliance for Research and Technology 
(SMART) tested two 10-passenger “Auto Rider” vehicles along a ten-station, 1.5 km loop at a 
public park, Gardens by the Bay. The vehicles provided service to park visitors at a maximum 
speed of 10 km/h along paths that were also used by pedestrians and cyclists. The vehicles 
were wheelchair-accessible. 

SAN RAMON, CALIFORNIA 

A demonstration project involving two EasyMile vehicles is planned to take place in 2016 or 
2017 on private roads between office buildings in a private business park and to a nearby 
train station in San Ramon, California (gomentumstation, 2015)(Burg, 2016)(Torres, 2016). 
After six months of testing at a test track, GoMentum Station, trials will begin at Bishop 
Ranch, which is a 585­acre office park in San Ramon. Initially, the shuttles will operate after 
business hours and during weekends on private roads and parking lots in a limited area of the 
office park (Torres, 2016)(Pessaro, 2016). The vehicles will be monitored remotely from a 
control room. A next phase of testing will proceed pending regulatory approval of testing of 
automated vehicles without steering wheels and pedals on public roads. In this phase, the 
shuttles would operate during the day on four blocks of public streets in the office park 
(Pessaro, 2016). 

BABCOCK RANCH, FLORIDA 

Babcock Ranch is a newly planned greenfield community. The developers plan to make 40 
low-speed automated vehicles available to the first residents and businesses in 2017, and 
increase the fleet to 400 vehicles by 2021 (AUVSI, 2016)(Hanley, 2016)(Babcock Ranch, 
2016). 
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COLUMBUS, OHIO 

In December of 2015, the United States Department of Transportation (USDOT) issued the 
Smart City Challenge, inviting cities to describe how they proposed to use new technologies 
to address transportation challenges. In March of 2016, seven cities were awarded $100,000 
each to support further conceptual development and planning. In June of 2016, Columbus, 
Ohio was awarded $40 million as the winner of the Smart City Challenge (Cronin, 2016). The 
City is also dedicated $90 million in matching funds to move forward with their proposals 
(Feran, 2016). 

Among various actions proposed by the City, it proposed to deploy and test automated 
electric vehicles, linking the Easton Transit station with residential, commercial, and retail 
facilities in the Easton office/shopping park and Port Columbus areas. According to the City, 
the Easton area is presently underserved due to low and fluctuating demand (City of 
Columbus, 2016). It is reported that the shuttles would have room for up to 12 passengers 
(Gould, 2016). 

According to the Federal Highway Administration, Columbus has access to several resources 
to facilitate testing of automated vehicles, including the Sports Pavilion and Automotive 
Research Complex (SPARC) facility, which provides a controlled testing environment, the 
Transportation Research Center (TRC), which has a seven-mile long, high-speed track for 
testing of truck platooning, and the CAR West site at Ohio State University, which will be 
equipped with charging infrastructure and signal systems (Cronin, 2016). 

AUSTIN, TEXAS 

Among various actions proposed in their submission to the USDOT’s Smart City Challenge, 
the City of Austin proposed to deploy low-speed automated and connected shuttles at the 
City’s international airport. According to the City, the shuttles would transport passengers 
along a “simplified urban street network located wholly on airport property” between the main 
terminal and a new mobility hub and staging area that would be located adjacent to a cell 
phone parking lot. The City argued that the shuttles would reduce the number of vehicles 
entering the terminal road system, and would thereby reduce congestion and improve 
pedestrian safety (City of Austin, 2016). 

BEVERLY HILLS, CALIFORNIA 

The City of Beverly Hills is proposing to deploy a fleet of 8- to 12-passenger automated 
shuttles to provide access to proposed local subway stations. As no parking will be provided 
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near the stations, the City is proposing the shuttles in order to improve first- and last-mile 
access (Marcokwitz, 2016). 
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11. Recommendations 

In this section, several preliminary recommendations are offered for consideration by the City. 
Further work should be performed to refine these recommendations and to develop detailed 
policies and plans. 

11.1 Public transit 

In general, these recommendations aim at the proactive deployment of automation in public 
transit buses to reduce costs, improve service, and to make the most efficient use of limited 
road capacity. 

Proactively deploying automation in transit allows for more efficient use of road infrastructure 
than is possible with light-duty vehicles. While platoons of automated light-duty vehicles will 
be able to increase road capacity, automated buses would move much higher numbers of 
travelers on the same road infrastructure. The improved service made possible by automation 
would be likely to mitigate mode shifts to travel by automated light duty vehicle, both in the 
early emergence and late emergence scenarios. It could also mitigate the congestion on 
streets expected to result from increased light duty vehicle traffic on freeways. 

As the various levels of automation emerge onto the market and become affordable, travel by 
light-duty vehicle would be increasingly attractive to many travelers. This would especially be 
the case with Level 5 automation. In general, automation in private vehicles and driverless 
taxis would result in small to large increases in road capacity and small to very large increases 
in ease of travel. While this would tend to lead to a shift away from travel by transit to travel 
by light duty vehicle, this shift could be mitigated or reversed by improving transit service. 
Automation could permit such improvements, by increasing speed, reliability, capacity, 
frequency, ride quality, and reduced labour costs. Improved cost-efficiency would support the 
expansion of bus rapid transit networks and other bus routes. 

With respect to Edmonton’s current transportation planning framework, the following 
recommendations support several of the strategic goals outlined in The Way We Move, 
especially “Transportation Mode Shift”, “Access and Mobility”, “Transportation and Land Use 
Integration”, “Sustainability”, “Transport and Land Use Integration”, and “Economic Vitality”. 
The recommendations especially support the Strategic Objective of developing an efficient, 
effective, accessible and integrated bus network. 
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IMPLEMENT BRT WITH LEVEL 1 AND 2 TECHNOLOGIES 

Level 1 and 2 technologies such as lane-keeping assistance and precision docking are 
commercially available and cost-effective. These technologies could be implemented in bus 
rapid transit lines and support improved performance by enabling increased speeds, reduced 
dwell time, and improved passenger access. They would also allow for the deployment of 
narrow dedicated busways, which would reduce infrastructure costs. In addition, these 
technologies would facilitate buses running on shoulders, which is an application that can be 
implemented in the very short term, with no need for new infrastructure. 

These technologies would produce minimal labour disruption and thus would be unlikely to 
encounter resistance from bus drivers or unions. 

This recommendation should be implemented within 0 to 5 years. 

IMPLEMENT PROTECTED BUSWAYS WITH NO AT-GRADE CROSSINGS ON FREEWAYS  

Protected busways can facilitate automated operation; with sufficient protection, fully 
automated operation of bus rapid transit may be feasible in the near term. Platooning would 
also be facilitated. The reduced labour costs could enable major improvements in service. 
Early deployments of such protected lanes should be uninterrupted, without uncontrolled at-
grade crossings. E.g., such protected lanes could be implemented on median lanes on 
freeways. Alternatively, controlled at-grade crossings such as used by LRT systems may be 
appropriate. 

Early deployments of automated BRT should be targeted to locations where they would 
provide the greatest capacity benefits and where other approaches to expanding capacity are 
expensive or difficult, such as on congested corridors with bottlenecks at bridges and tunnels. 
In these cases, automated BRT would provide a very clear advantage over alternatives, such 
as adding freeway lanes for light-duty vehicles. 

The deployment of automated BRT could be accompanied by a reduction in the bus driver 
labour force; alternatively, bus drivers may be employed in operating buses on routes that are 
less amenable to automation in the near-term to medium-term. Any accompanying reduction 
of the bus driver labour force may be achievable partly through attrition, given that many bus 
drivers in Edmonton are older. On this note, a detailed examination of labour issues related to 
vehicle automation must be conducted, but is beyond the scope of this report. 

This recommendation should ideally be implemented within approximately 2 to 5 years. 
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IMPLEMENT BUS PLATOONING TO SUPPORT INCREASED CAPACITY WITH MINIMAL 
LABOUR COSTS 

Protected busways, mentioned in the previous recommendation, would enable platooning 
with partially automated buses, with fully automated buses following human-driven lead 
buses, or with all buses fully automated. Such applications could increase capacity with 
minimal labour costs. 

This recommendation should ideally be implemented within approximately 3 to 10 years. 

CONSIDER SMALLER BUSES AND SHORTER BRT PLATFORMS 

Where fully automated operation is made possible, either by Level 5 automation or by Level 4 
automation in protected busways, the use of smaller buses should be considered. The 
reduced operating costs made possible by automation would facilitate more frequent service, 
so high-capacity buses may no longer be necessary on some routes. 

This recommendation should ideally be implemented within approximately 3 to 10 years. 

CONSIDER AUTOMATED BRT AS AN ALTERNATIVE TO LRT 

In some cases, automated BRT could provide similar service to LRT, with lower infrastructure 
costs. Automated BRT should especially be considered where dual-mode operation could 
provide superior service – in such an application, buses would operate in a fully-automated 
mode on a protected busway, and a human driver would then take over and drive the bus off 
the main line to serve routes on city streets where fully automated operation is not feasible, 
before the emergence of Level 5. 

This recommendation particularly supports the Strategic Action of “evaluating where it is 
appropriate to provide premium bus service as a precursor to LRT”. This recommendation 
also implies a review of the existing Strategic Objective to expand the LRT to all sectors of the 
City – while LRT may be the most appropriate transit technology to serve certain areas, 
automated BRT may be more appropriate in some areas, and therefore should also be 
considered as an alternative. 

This recommendation should ideally be implemented within approximately 3 to 10 years. 



Planning for automated vehicles in Edmonton – Final report 

 
93 

Antonio Loro Consulting Inc. – 10 October 2016 

DEPLOY LOW-SPEED LEVEL 4 VEHICLES IN LOWER-DENSITY AREAS 

In lower-density areas, Level 4 low-speed vehicles can be used to provide automated 
demand-responsive service. Because of their low speeds, these vehicles cannot provide high 
capacity, but they can complement higher-order transit, and can serve as a supplement or 
replacement for walking trips for people with lower levels of physical mobility, such as in areas 
with large elderly populations. 

This recommendation should ideally be implemented within approximately 5 to 15 years. 

PROVIDE AUTOMATED DEMAND-RESPONSIVE SERVICE WITH SMALLER BUSES IN LOW-
DENSITY AREAS 

Especially with the emergence of Level 5 automation, bus service in lower density areas 
would become significantly less attractive to many travelers in comparison to Level 4 private 
vehicles and driverless taxis. Level 5 automation in light-duty vehicles would allow travelers to 
engage in other activities while traveling, as is the case for buses, but with the additional 
convenience of door-to-door and on-demand service. Bus ridership could be expected to 
drop.  

One response to this would be to change bus service in these areas to a demand-responsive 
model where smaller automated buses provide more efficient service with flexible routes and 
schedules. 

This recommendation should be implemented once the requisite technologies are available, 
which could be within a decade, but could be further in the future. 

REDUCE BUS SERVICE IN LOW-DENSITY AREAS AND ENCOURAGE USE OF DRIVERLESS 
TAXIS AS TRANSIT FEEDERS 

After the emergence of Level 5, in areas with lower densities of trip origins and destinations, 
or in off-peak times, where it is difficult to provide effective transit service, and where 
driverless taxi service attracts a large proportion of travelers would be to cut bus service, bus 
service could be reduced or eliminated. The use of driverless taxis could be encouraged in 
such areas and time periods. Driverless taxis could especially serve as feeders to higher-
order transit service, complementing BRT and LRT by providing “first mile/last mile” service in 
areas where it is difficult to provide efficient bus service.  
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To ensure mobility is provided in a socially equitable manner, it may be necessary to provide 
subsidies for driverless taxi service to people with lower incomes. It will also be necessary to 
ensure taxis are accessible to individuals with limited physical mobility. 

Private vehicles with Level 4 automation could also serve as feeders to higher-order transit; 
such uses should be encouraged, for example, through appropriate road pricing or parking 
pricing. 

This recommendation should be implemented once the requisite technologies are available, 
which could be within a decade, but could be further in the future. 

PRICE TRANSIT TO SUPPORT HIGH MODE SHARE 

With the increased ease of travel by light-duty vehicle that would result from automation, it 
may be necessary to reduce transit fares, in general or in selected areas and times, to 
maintain transit mode share. 

This recommendation should ideally be implemented within approximately 3 to 10 years. 

PRICE DRIVERLESS TAXI TRIPS APPROPRIATELY TO INCENTIVIZE USE AS TRANSIT 
FEEDERS 

After the emergence of Level 5, it may be necessary to price driverless taxi fares to 
encourage their use as complements rather than as replacements for transit, where 
appropriate. For example, shorter taxi trips that begin or end at transit stations or stops could 
be priced lower to incentivize the use of taxis for first mile/last mile transit access and to 
reduce the number of long-distance trips that are taken by driverless taxi where efficient 
transit service exists. Also, as mentioned above, it may be necessary to subsidize driverless 
taxi service for people with lower incomes, in order to provide equitable service. 

This recommendation should be implemented once the requisite technologies are available, 
which could be within a decade, but could be further in the future. 

PROVIDE DROP-OFF/PICK-UP ZONES TO FACILITATE TRANSFERS TO AND FROM 
FIRST/LAST MILE SERVICES 

In order to facilitate efficient transfers of passengers between transit and first mile/last mile 
services, it will be necessary to provide adequate drop-off and pick-up zones. 

This recommendation should ideally be implemented within approximately 3 to 10 years. 
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11.2 Active transportation modes 

The following recommendations support several of the strategic goals outlined in The Way 
We Move, especially “Transportation Mode Shift”, “Access and Mobility”, “Transportation and 
Land Use Integration”, “Health and Mobility”, “Sustainability”, “Transport and Land Use 
Integration”, and “Economic Vitality”. 

SUPPORT WALKING AND CYCLING, ESPECIALLY IN DENSE AREAS AND NEAR TRANSIT 
STATIONS 

Even if Level 5 automated vehicles become ubiquitous, walking and cycling will remain 
convenient for short trips, and would be continue to produce other benefits, such as 
supporting liveable urban environments and improving public health. Suitable infrastructure 
should be provided to encourage walking and cycling trips and to support the use of transit, 
which of course also requires good pedestrian access. 

This recommendation should be implemented immediately. 

DEPLOY AND PRICE LOW-SPEED VEHICLES AND TAXIS STRATEGICALLY TO MINIMIZE 
REDUCTION OF ACTIVE TRANSPORTATION MODE SHARE 

Any deployments of Level 4 low-speed vehicles and Level 5 driverless taxis should be 
strategically managed to minimize cannibalization of active modes. Low-speed Level 4 
vehicles would best serve relatively short trips, and driverless taxis may also be attractive for 
such trips; however, active modes are also best suited to shorter trips. Therefore, Level 4 
low-speed vehicles should ideally be deployed where active modes are less attractive or 
feasible – for example, in areas with larger populations of elderly people. In addition, the use 
of Level 5 driverless taxis for short trips should be discouraged, by the means of pricing, for 
example, except for those travelers for whom active modes are less feasible. 

This recommendation should ideally be implemented within approximately 3 to 10 years. 

  



Planning for automated vehicles in Edmonton – Final report 

 
96 

Antonio Loro Consulting Inc. – 10 October 2016 

11.3 Roads 

The following recommendations concern road supply and road pricing. 

The following recommendations support several of the strategic goals outlined in The Way 
We Move, especially “Transportation Mode Shift”, “Access and Mobility”, “Transportation and 
Land Use Integration”, “Well-maintained Infrastructure”, “Sustainability”, “Transport and Land 
Use Integration”, and “Economic Vitality”. 

CONSIDER REDUCING SPEED LIMITS ON LOCAL STREETS 

Reducing traffic speeds on local streets would facilitate the fully automated operation of Level 
4 vehicles, such as the low-speed automated shuttles that have been undergoing testing in 
various cities around the world. In addition, low speeds improve safety for all road users and 
help create a more welcoming environment for walking and cycling. 

This recommendation should be implemented immediately. 

CONSIDER DEDICATED LANES FOR AUTOMATED LIGHT-DUTY VEHICLES WHEN 
ADOPTION LEVELS ARE SUFFICIENTLY HIGH 

When the number of light-duty vehicles capable of platooning is sufficient to make effective 
use of a dedicated lane without increasing delays for traffic on other lanes – that is, where the 
number of vehicles using a dedicated lane is at least equal to the number of vehicles using a 
conventional lane – such dedicated lanes would reduce delays for automated vehicles. In 
addition, depending on the degree of infrastructural protection provided, such lanes would 
also facilitate fully automated operation of Level 4 vehicles. In order to ensure the lanes are 
efficiently used, such lanes could be dedicated to automated vehicles during specific times, 
such as during peak periods. Similarly, once the requisite technology has been adopted 
broadly, dedicated lanes for platooning of freight vehicles may reduce delays both in goods 
movement and in passenger travel. 

This recommendation should be implemented once the requisite technologies are commonly 
available, which could be within a decade, but could be further in the future. 

IMPLEMENT LANE CONVERSIONS/ROAD DIETS WHERE OPPORTUNITIES EXIST 

When adoption of platooning-capable vehicles reaches higher levels, a smaller number of 
freeway lanes would suffice to provide a given level of road capacity. Similarly, where high-



Planning for automated vehicles in Edmonton – Final report 

 
97 

Antonio Loro Consulting Inc. – 10 October 2016 

capacity transit is provided, in the form of automated BRT, for example, a smaller number of 
road lanes would suffice to provide a given level of passenger capacity. In such cases, it may 
be possible to convert the surplus road space to other uses, such as busways, bike or 
pedestrian facilities, or greenspace. 

This recommendation should ideally be implemented within approximately 3 to 10 years. 

PRICE ROADS AND PARKING STRATEGICALLY TO MITIGATE INCREASES IN VKT AND 
CONGESTION ON STREETS 

The decreased generalized cost of travel by light duty vehicle will tend to lead to increases in 
VKT and increased congestion on streets. The resulting external costs should be internalized 
by applying appropriate road pricing and parking pricing. In particular, one cost that road 
pricing should account for is the amount of delay imposed on other vehicles. 

Roads should also be priced appropriately to discourage empty vehicle VKT from remote 
parking and from driverless taxi deadheading. As some forms of automation may facilitate the 
use of electric drive in vehicles and may lead to increased prevalence of electric vehicles, this 
may also make road pricing both more important and more politically feasible. 

This recommendation should ideally be implemented immediately. 

INCENTIVIZE ADOPTION OF PLATOONING-CAPABLE TECHNOLOGY WITH LOWER ROAD 
PRICING 

Road pricing should be set carefully. It may be justified to incentivize the adoption of 
platooning-capable technology (that is, Level 3, 4, or 5 automation combined with suitable 
V2V technology) through discounted road pricing, since vehicles capable of platooning are 
capable of occupying less road space and thus increasing road capacity and reducing delays 
when a sufficient number of such vehicles are present on the road. 

However, it should be emphasized that though these vehicles can support more efficient use 
of road infrastructure, this benefit would mainly occur on freeways. Therefore, to avoid 
congestion on other roads such as city streets, it would be important to set appropriate 
prices on the use of different road types. If road pricing is applied only to freeways, then it will 
be important not to apply an excessive discount to road pricing for platooning-capable 
vehicles. Such pricing schemes are more likely to produce significant behavioural shifts in 
regions with extensive freeway networks. 

This recommendation should ideally be implemented within approximately 3 to 10 years.  
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11.4 Parking 

The following recommendations support several of the strategic goals outlined in The Way 
We Move, especially “Transportation Mode Shift”, “Access and Mobility”, “Transportation and 
Land Use Integration”, “Sustainability”, “Transport and Land Use Integration”, “Well-
maintained Infrastructure”, and “Economic Vitality”. 

PRICE PARKING TO MITIGATE DEMAND INCREASES FROM LEVEL 2 AND 3 AUTOMATION 

Since Level 2 and 3 automation would decrease the generalized cost of vehicle travel 
somewhat, travel would tend to increase and parking demand would also increase. Parking 
pricing may need to be adjusted to manage this demand; for example, parking pricing could 
be increased, or dynamic parking pricing implemented. 

Road pricing would also manage demand, but it might also be necessary to adjust parking 
pricing to discourage excessive remote parking. 

This recommendation should ideally be implemented within approximately 3 to 10 years. 

CONSIDER PRICING PARKING TO MANAGE REMOTE PARKING DEMAND 

With the emergence of Level 5 automation, consider pricing remote parking locations to limit 
vehicle traffic destined for remote parking and to encourage transit or driverless taxi use. 

Depending on where parking is located, the convenience of remote parking could generate 
significant additional VKT by vehicles traveling to park in formerly low-demand locations. 
Road pricing (or other measures, such as fuel surcharges) may be sufficient to manage this 
additional VKT; however, depending on the road pricing strategies used, it may be necessary 
to adjust parking pricing to provide a sufficient disincentive against excessive use of remote 
parking locations. 

This recommendation should be implemented once the requisite technologies are commonly 
available, which could be within a decade, but could be further in the future. 

REDUCE MINIMUM PARKING REQUIREMENTS AND CONVERT PARK-AND-RIDES 

Automation, especially Level 5, would create opportunities to reduce minimum parking 
requirements and to convert park-and-rides. Reducing parking minimums in intensely 
developed areas would encourage a shift of parking to less intensely developed areas and 
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free up this high-value land for higher-value uses. However, it should be ensured that the new 
parking locations are sufficiently close to popular destinations so excessive zero-passenger 
VKT is not generated by vehicles travelling to remote parking locations. A combination of 
measures may be needed, including road pricing, location-based parking charges or parking 
taxes, and land use zoning. 

Of course, improving transit by the means of various levels of automation would also create 
opportunities to reduce parking supply, both in central and less central areas. 

This recommendation should ideally be implemented immediately. 

11.5 Land use 

The following recommendations support several of the strategic goals outlined in The Way 
We Move, especially “Transport and Land Use Integration”, “Access and Mobility”, 
“Transportation Mode Shift”, “Sustainability”, “Health and Safety”, and “Economic Vitality”. 

INTERNALIZE COSTS OF INFRASTRUCTURE AND SERVICES TO DISCOURAGE EXCESSIVE 
DISPERSED DEVELOPMENT 

To discourage excessive levels of dispersed development that vehicle automation may 
facilitate, and to reduce the associated external transportation and other infrastructure costs, 
such as the costs of providing water and sewer services, land use policies should internalize 
these costs.  For example, development charges can be set to more closely reflect the costs 
of providing infrastructure and services under different patterns of development. 

This recommendation should ideally be implemented immediately. 

SUPPORT DEVELOPMENT NEAR BRT AND OTHER HIGHER-ORDER TRANSIT SERVICES 

Development patterns that support the use of public transit, such as development near BRT 
stations and near other strong transit services, should be encouraged. These development 
patterns will tend to impose lower external costs, including those related to increased VKT, 
infrastructure, and services. 

This recommendation should ideally be implemented immediately. 
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ENCOURAGE REDEVELOPMENT OF PARKING FACILITIES IN INTENSELY DEVELOPED 
AREAS AND AT TRANSIT STATIONS 

As automated buses and/or Level 5 driverless taxis cut parking demand, or as parking 
locations shift with the emergence and rise of remote parking, land formerly used for parking, 
such as in downtown areas, or at park-and-ride facilities at transit stations, can be used for 
infill development. Various more valuable uses would be possible, though conversion to 
greenspace may encounter the least resistance from neighbourhood residents. In intensely 
developed areas, market pressures may be sufficient to trigger redevelopment of parking 
facilities to better uses, though other measures, such as taxes on parking facilities or rezoning, 
may be necessary. Reduced dependence on privately owned vehicles could also facilitate 
other changes, such as the removal/redevelopment of garages in apartments and houses. 

This recommendation should ideally be implemented within approximately 3 to 10 years. 

CONVERT ROADSIDE PARKING SPACES TO PEDESTRIAN AND CYCLE FACILITIES OR 
GREENSPACE 

With automated buses, Level 5 remote parking, and driverless taxis, the need for roadside 
parking spaces would be reduced. These spaces could be converted to different uses. 
Increased vehicle traffic could lead to pressure to use the space to provide more lanes for 
motor vehicles, but if it is desired to create more livable “complete streets”, the space should 
be preferably used to provide facilities for active transportation, or to provide greenspace or 
other public spaces. 

This recommendation should ideally be implemented within approximately 3 to 10 years. 

11.6 Pilot deployments 

Before any large-scale deployments of automation in public transit, the City can begin by 
strategically deploying existing Level 1, 2, and/or 4 automation in small-scale pilot projects. 

Such deployments could include Level 4 low-speed vehicles serving short routes, in the range 
of 1 to 5 kilometres, for example. These vehicles could be deployed in areas other than public 
roads, such as university campuses, business parks, airports, hospitals, retirement 
communities, parking facilities, industrial areas, theme parks, golf courses, multi-use paths, 
and private roads in other areas.  

Preferably, any deployment of automated low-speed vehicles should be located where it does 
not compete inappropriately with active modes of transportation. For example, low-speed 
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vehicles could be deployed where there is a significant population of individuals with limited 
physical mobility. 

Once a legislative framework exists to permit such activities, Level 4 low-speed vehicles could 
also be piloted on public roads, especially low-speed roads with light traffic, and if exclusive 
lanes with sufficient protection are implemented, Level 4 could be piloted in buses; however, 
these are not likely to be feasible for pilot deployments in the near term. On public roads, 
Level 1 and 2 automation can be piloted in buses, especially where protected or exclusive 
lanes are available. 

One example of a potential location for a pilot deployment of Level 4 low-speed vehicles 
would be in the area around the Telus World of Science. In this area, it would be possible to 
develop a route of approximately 2 kilometres that connects a major public transit node with 
various destination such as a science centre, an arena, a swimming pool, a lawn bowling club, 
and a parking lot. An example of a potential route is illustrated in Figure 15. 

 

Figure 15. Example of potential route for pilot deployment of Level 4 low-speed automated vehicles 
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Other examples of potential locations include the University of Alberta and Hawrleak Park, the 
University of Alberta South Campus, Fort Edmonton Park, Alberta Research and 
Development Park, the Edmonton Valley Zoo, Edmonton Northlands, Century Park & Ride, 
and the West Edmonton Mall; these and other potential locations should be assessed. 

This recommendation should ideally be implemented within 1 to 2 years. 

11.7 Current shared mobility modes 

ENCOURAGE THE USE OF SHARED MOBILITY MODES SUCH AS CARSHARING AND 
RIDESOURCING AS AN ADJUNCT TO PUBLIC TRANSIT AND AN ALTERNATIVE TO 
PRIVATE VEHICLE USE 

The extent to which current shared mobility modes, such as carsharing and ridesourcing, are 
used in preference to private vehicles, for trips that cannot be efficiently served by higher-
capacity vehicles such as buses, may affect the role of future shared mobility modes, such as 
driverless taxis and share taxis, and the extent to which these future modes are used in 
preference to private vehicles, for trips that cannot be efficiently served by higher-capacity 
vehicles. If individuals increasingly opt to use existing modes of shared mobility, such as taxis, 
ridesourcing, and carsharing, rather than using private vehicles to take trips in the cases 
specified above, such a trend may lead to reduced incentives for private car ownership in the 
near term to far term, and may also support stronger future preferences for the use of future 
modes of shared mobility, such as driverless taxis and share taxis, rather than using private 
vehicles, for appropriate trips. Considering the potential near-term to far-term benefits 
associated with such shifts, the City should encourage the use of shared mobility modes 
such as carsharing and ridesourcing, particularly for trips that cannot be efficiently served by 
transit modes such as bus and rail. 

This recommendation should be implemented immediately. 
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11.8 Recommendations by timeframe 

The recommendations described above are summarized in the table below to highlight the 
relative timing of each. Note that the timelines given are approximate and may require 
modification depending on the future speed of technological development. 

 

RECOMMENDATION 2016-2019 2020-2024 2025-2030 

PUBLIC TRANSIT 

               

Implement BRT with Level 1 and 2 
technologies                

Implement protected busways with no 
at-grade crossings on freeways                 

Implement bus platooning to support 
increased capacity with minimal labour 
costs                

Consider smaller buses and shorter 
BRT platforms                

Consider automated BRT as an 
alternative to LRT                

Deploy low-speed level 4 vehicles in 
lower-density areas                

Provide automated demand-
responsive service with smaller buses 
in low-density areas                

Reduce bus service in low-density 
areas and encourage use of driverless 
taxis as transit feeders                

Price transit to support high mode 
share                

Price driverless taxi trips appropriately 
to incentivize use as transit feeders                

Provide drop-off/pick-up zones to 
facilitate transfers to and from first/last 
mile services                
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RECOMMENDATION 2016-2019 2020-2024 2025-2030 

ACTIVE TRANSPORTATION MODES 

               

Support walking and cycling, 
especially in dense areas and near 
transit stations                

Deploy and price low-speed vehicles 
and taxis strategically to minimize 
reduction of active transportation 
mode share 

               

ROADS 

               

Consider reducing speed limits on 
local streets                

Consider dedicated lanes for 
automated light-duty vehicles when 
adoption levels are sufficiently high                

Implement lane conversions/road diets 
where opportunities exist                

Price roads and parking strategically to 
mitigate increases in vkt and 
congestion on streets                

Incentivize adoption of platooning-
capable technology with lower road 
pricing                

PARKING 

               

Price parking to mitigate demand 
increases from level 2 and 3 
automation                

Consider pricing parking to manage 
remote parking demand                

Reduce minimum parking 
requirements and convert park-and-
rides                
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RECOMMENDATION 2016-2019 2020-2024 2025-2030 

LAND USE 

               

Internalize costs of infrastructure and 
services to discourage excessive 
dispersed development                

Support development near BRT and 
other higher-order transit services                

Encourage redevelopment of parking 
facilities in intensely developed areas 
and at transit stations                

Convert roadside parking spaces to 
pedestrian and cycle facilities or 
greenspace                

PILOT DEPLOYMENTS 

               

CURRENT SHARED MOBILITY MODES 

               

Encourage the use of shared mobility 
modes such as carsharing and 
ridesourcing as an adjunct to public 
transit and an alternative to private 
vehicle use 
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11.9 Next steps 

The following are highlighted as proposed next steps for the City of Edmonton to take as 
soon as possible, beginning in 2016. 

CONDUCT FOCUSED RESEARCH ON PRIORITY AREAS 

Focused research should be conducted on the following priority topics. 

• Conduct modeling of travel and land use impacts of various forms of vehicle automation; 
leverage the internal capacity of Edmonton’s expert transportation modelers in 
combination with external advice on appropriate assumptions and interpretation for the 
modeling of the impacts of automation 

• Identify opportunities for near-term pilot deployment(s) of Level 4 low-speed vehicles and 
Level 1, 2, and/or 4 in buses; move forward proactively toward implementation in the 
near-term to help ready Edmonton for rapid future technological change and to position it 
as an innovative, forward-thinking city; conduct detailed review of relevant precedents in 
cities in North America and around the world 

• Conduct study on feasibility of future broad deployments of Level 1, 2, and/or 4 in transit 
buses; study benefits and costs 

• Review labour issues related to vehicle automation, especially automation in public transit 
• Study issues related to vehicle automation and goods movement in Edmonton 

CREATE AUTOMATED VEHICLES ISSUES WORKING GROUP WITH INTERNAL AND 
EXTERNAL STAKEHOLDERS 

In 2015, the City took the proactive step of beginning to explore issues related to the future 
impacts of automated vehicles. The City should continue this work by creating a working 
group, comprising both internal and external stakeholders, that focuses on issues related to 
automated vehicles. 

DEVELOP COMPREHENSIVE VEHICLE AUTOMATION STRATEGY 

The preliminary recommendations proposed in this report should be used to inform the 
development of a broad, comprehensive vision and strategy that guides the City’s approach 
to automated vehicles. The recommendations proposed here should be further refined; the 
benefits, costs, and feasibility of the recommendations should be analyzed, and high priority 
recommendations should be identified. Implementation steps and timelines should be 
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developed, and key actors and roles defined. In addition, where necessary, additional 
recommendations should be developed that address other issues in need of attention. 

PUBLIC EDUCATION AND COMMUNICATION 

A strategy should be developed to keep Edmontonians informed on the implications of 
automation and to communicate on the City’s related initiatives. The communication strategy 
should be developed to show how Edmonton is planning and implementing strategic, 
considered measures to take advantage of automation technologies to in order to improve 
mobility and quality of life. 

UPDATE ANALYSIS OF IMPACTS 

Automation technologies are developing rapidly, and research on automation and its impacts 
is also advancing rapidly. For this reason, the City should expand, refine, and update the 
analysis provided in this brief report on a frequent and regular basis. Such updated analyses 
will be necessary to inform optimal policy approaches. On a related note, the impending rapid 
changes in technology may require an acceleration of the transportation planning cycle in 
Edmonton, with more frequent revisions of plans. 
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Supplement: Discussion on current 
shared mobility modes 

The following discussion supplements the final report on the planning for automated vehicles 
in Edmonton. 

When sufficiently advanced vehicle automation technologies become available, it will become 
possible to apply them to create new ways to travel, such as driverless taxis and share taxis. 
Driverless taxis and share taxis will be especially useful to serve trips within a certain range of 
travel demand. In particular, they will be useful to serve trips where and when travel demand 
is too low to enable efficient service by fleets of higher-capacity vehicles, i.e., buses and 
trains; and they will be useful to serve trips where and when travel demand is high enough 
that satisfactory service by driverless taxi or share taxi can be provided efficiently. Within this 
range of travel demand, travel by driverless taxi or share taxi will generally produce smaller 
negative impacts than travel by private vehicle. For example, it is expected that parking 
demand will be reduced, and in the case of travel by share taxi, it is expected that less VKT 
per trip will be produced. In addition, driverless taxis and share taxis would be useful for trips 
where certain benefits, such as shorter travel time, shorter walking distances between the 
vehicle service and the actual trip origins and destinations, greater privacy, or increased cargo 
capacity are considered to outweigh the private and/or social costs of travel by those modes. 

These future modes of transport have some features in common with currently existing 
modes of transport. Given that a user of a driverless taxi or share taxi travels in a fleet vehicle 
that is used to provide service to multiple travelers throughout the day, these modes can be 
considered to fall under the broad category of “shared mobility” modes. To illustrate some 
broad features driverless taxis and share taxis have in common with three current share 
mobility modes: taxis, ridesourcing (often referred to as transportation network companies 
(TNCs) or ride-hailing), and carsharing similarly involve the use of fleets of motorized vehicles 
to provide service to multiple travelers throughout the day, and, also similar to the future 
modes of driverless taxi and share taxi, are useful for providing service especially within 
certain ranges of travel demand, can produce smaller negative impacts than travel by private 
vehicle, and are useful for providing service for certain kinds of trips, for example, where 
speed is considered to justify higher private travel cost. 

If individuals increasingly opt to use existing modes of shared mobility, such as taxis, 
ridesourcing, and carsharing, rather than using private vehicles to take trips in the categories 
described above (and use public transit and active modes for other trips), such a trend may 
support stronger future preferences for the use of future modes of shared mobility, such as 
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driverless taxis and share taxis, rather than using private vehicles, for appropriate trips. In 
addition, given that applying advanced vehicle automation technology to either taxis, 
ridesourcing, or carsharing would effectively result in driverless taxis (or share taxis), these 
current shared mobility modes can be regarded as precursors of the future shared mobility 
modes of driverless taxi and share taxi. 

Given that the actions that the City of Edmonton takes regarding current shared mobility 
modes may affect the role of future shared mobility modes, and may affect in particular the 
extent to which these future modes are used in preference to private vehicles, where 
appropriate, it is useful to also consider the role of current shared mobility modes and their 
potential to provide travel options that can be preferable to travel by private vehicles. A brief 
discussion of existing shared mobility modes, with a focus on ridesourcing and carsharing, is 
provided below. A broader and more detailed discussion of existing shared mobility modes is 
beyond the scope of this report. 

Ridesourcing and carsharing 

In ridesourcing, drivers use their personal vehicles to provide transportation services to 
travelers; travelers connect with drivers through digital platforms such as smartphone 
applications. These applications facilitate booking, payment, customer feedback on drivers, 
and driver feedback on passengers  (FHWA, 2016)(Murphy, 2016a). Examples of ridesourcing 
providers include the companies Uber and Lyft. “Ridesplitting” is sometimes used to refer to 
ridesourcing where customers can choose to travel with other customers for a reduced fare 
(FHWA, 2016). 

In carsharing, members of carsharing organizations have access to automobile fleets for 
short-term use, usually for short urban trips. Two common forms of carsharing are round-trip 
carsharing, where a user must return the vehicle to the location at which they borrowed it, 
and one-way carsharing, where a user can end the trip and drop off the vehicle at a different 
location (Shared Use Mobility Center, 2015). 

Potential benefits 

Carsharing is associated with lower rates of car ownership. According to the FHWA (FHWA, 
2016), studies and surveys of members of carsharing organizations have shown that up to 32 
percent of carsharing members sell their personal vehicles, and between 25 percent and 71 
percent of members opt to forego the purchase of a vehicle. The Shared Use Mobility Center 
(Shared Use Mobility Center, 2015) cites a study from the University of California, Berkeley, 
which found that, for each car in a carsharing fleet, between 9 and 13 cars are sold or not 
purchased. 
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Carsharing may encourage increased use of public transit. In a study from City Carshare, 
cited by the Shared Use Mobility Center, more than 65 percent of respondents with 
carsharing memberships took transit a few times a week or more, compared to approximately 
41 percent of respondents without carsharing memberships (Shared Use Mobility Center, 
2015). The FHWA reports that studies of six North American locations found that 13.5 to 54 
percent of carshare users take public transit more frequently after becoming carshare users. 
Nevertheless, the FHWA also notes that one study has found a slight shift away from public 
transit ridership  (FHWA, 2016). The Shared Use Mobility Center notes that while shared 
mobility modes may take riders off transit for some trips, because it enables people to get 
around more easily without owning a car, it may create an entirely new group of transit riders 
(Shared Use Mobility Center, 2015). More generally, the FHWA points out that reduced car 
ownership is associated with increased use of public transit, walking, and bicycling (FHWA, 
2016).  

Ridesourcing may also increase use of public transit. The Shared Use Mobility Center cites a 
UC Berkeley survey that found that ridesourcing “appears to substitute for longer public 
transit trips but otherwise complements transit”. In addition, according to the Shared Use 
Mobility Center, Lyft reports that 25 percent of its trips in the San Francisco area are to or 
from Caltrain stations (Shared Use Mobility Center, 2015). 

Carshare users appear to have lower VKT per person. According to the FHWA, the VKT of 
the average carshare user in the United States “is reduced by 7.6 percent to 79.8 percent”  
(FHWA, 2016). In addition, use of carsharing may further reduce emissions impacts: because 
carshare users often shed older vehicles, the carsharing vehicles that they use are much 
more efficient, averaging “10 more miles per gallon and resulting in lower fuel costs and 
greenhouse gas emissions” (Shared Use Mobility Center, 2015). 

Ridesourcing as an adjunct to existing transit services 

According to the Shared Use Mobility Center, shared mobility modes have the potential, in 
some cases, to provide mobility service with greater flexibility and lower costs than rail and 
bus. In particular, modes such as ridesourcing can improve first- and last-mile access to 
transit (Shared Use Mobility Center, 2015). One-way carsharing is described as an effective 
strategy for first/last-mile access in larger cities with progressive parking policies, and 
ridesourcing is described as effective in “walkable neighborhoods and in high to moderate-
density areas within large and mid-size cities” (Shared Use Mobility Center, 2015). The FHWA 
asserts that using shared mobility options to improve first/last-mile access to transit can 
“greatly improve quality of life for low-income households, which are generally 
disproportionately dependent on public transit” (FHWA, 2016). Another benefit of improving 
first/last-mile access to transit services like rail through the use of shared mobility modes like 
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ridesourcing is that stations could be spaced further apart, which would increase train speeds 
and reduce station construction costs (AJC.com, 2016). 

The FHWA recommends integrating mass transit with shared mobility modes such as 
ridesourcing and carsharing. This requires improving physical connectivity between modes, 
such as ensuring carsharing services are located near public transit stops. Integrating shared 
mobility with transit also entails providing integrated, one-stop sources of information on the 
various services, such as fares, routes, and schedules; and it also entails facilitating payment 
of fares for all modes with a single payment method (FHWA, 2016). 

Ridesourcing also has the potential to be used to provide demand-responsive services such 
as paratransit (Murphy, 2016a). Transit agencies may be able to provide the public with 
improved and more efficient service by partnering with ridesourcing companies, for example, 
by subsidizing ridesourcing trips in certain areas (Kane et al.)(DeGood et al.)(Schmitt, 2016). 
This could reduce the cost of providing service in low-density areas. 

A number of transit agencies have partnered with ridesourcing providers. For example, in 
Pinellas Park, a suburb of Tampa, Florida, the transportation agency has stopped running two 
bus lines and instead is paying for a portion of the cost of Uber rides that end at about 20 
designated transit stops. User receive a 50 percent discount for rides, up to a maximum of $3 
per ride. It is anticipated that the program will cost approximately a quarter of what it cost to 
operate the bus lines it replaced (Brustein, 2016)(Bliss, 2016). Altamonte Springs, Florida, a 
suburb of Orlando, is conducting a year­long trial where 20 percent of the cost of any Uber 
ride within city limits is covered, while 25 percent of the cost of rides that end at regional rail 
stations is covered (Brustein, 2016)(Liston, 2016). In addition, in Centennial, a suburb of 
Denver, Colorado, the local government is temporarily replacing the dial-a-ride program in a 
specific area with fully subsidized Lyft rides to and from a light rail station (Brustein, 
2016)(Bliss, 2016). Summit, New Jersey, is conducting a six-month pilot program where 100 
residents will be able to take subsidized trips to and from the local train station in order to 
avoid building a new parking lot. The trips will cost the same as an all­day parking permit (An, 
2016). Metro Transit in Minneapolis subsidizes Uber trips to provide a “guaranteed ride home” 
for regular commuters who occasionally need to travel outside rush hour, due to unexpected 
overtime or illness, for example (Metro Transit, 2016). 

Other partnership arrangements are possible. For example, Parkmerced, a development in 
San Francisco containing 8900 apartments, is offering new tenants $100 a month toward 
various transportation options if they agree to forego parking spots. A tenant can use the 
money for transit, taxis, and car­sharing, provided they spend at least $30 on Uber rides. In 
addition, trips by Uber Pool (a service where multiple customers can share rides) to or from 
Parkmerced to selected transit stations will have flat fares of $5. This arrangement should 
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enable the developer to reduce the need to create more parking spaces as the development 
expands (Hawkins, 2016). 


