EDMONTON’S GREEN HOME GUIDE

YOU’RE GONNA LOVE GREEN

BUYING, SELLING OR RENOVATING A HOME? CHECK OUT THESE ENERGY-SAVING GREEN IDEAS.
Congratulations. The fact that you’re about to buy a home, sell a home, or do some renovations means you’re planning for the future. And the fact that you’re about to explore Edmonton’s Green Home Guide means you’re thinking about Edmonton’s environmental future as well.
Having a greener home ensures you and your family will live in a comfortable setting with lower utility bills. And research suggests that green homes, depending on their features, also increase in value at a greater rate than conventionally designed homes. What’s not to love about that!

DISCLAIMER:

Construction based on the Green Home Guide does not ensure compliance with the regulations of either the Edmonton Zoning Bylaw or the Alberta Building Code. Any approvals or inspections provided by the City of Edmonton will be based solely on those regulations and will neither confirm nor refute the standards of this guide. Homeowners considering undertaking construction related to this Guide should contact Sustainable Development to ensure such compliance, and to obtain the necessary permits, inspections, and approvals.

For more information, please visit: edmonton.ca/SustainableDevelopment.
Our homes have a significant impact on the city’s long-term sustainability. By taking some simple, affordable steps to greening your next home purchase or renovation, you’re helping to minimize Edmonton’s environmental footprint, one house at a time.
So what are the green features that a home should have? The Guide has the answers. Each information section is filled with the details you need, covering everything from location, home size, and Canada’s energy rating system, to the building envelope, ventilation information, and home heating. You’ll also learn about hot water heaters, green rating systems, high-efficiency appliances, water consumption, landscaping, healthy homes and environment, solar energy, plus other green innovations. There’s even a handy glossary of terms.
An overview of the:

GREEN HOME GUIDE CHECKLISTS

ESSENTIAL FOR HOME BUYERS AND CONDO BUYERS

There’s an easy-to-follow checklist for single-family home buyers that contains the important green questions you need to ask your builder, your real estate agent, or the home seller. If you’re buying a condo, then the checklist for condo buyers is tailor-made for you. Please refer to the checklist of your choice to help you plan your energy-saving activities.

This Green Home Guide is intended to stay with the home; please use the checklists, write notes about your home in the margins, and give this book to the next owner.
GREEN HOME GUIDE
INFORMATION
SECTIONS
Take a Good Look at Your Location
Changing how you travel in the city and making travel choices that are sustainable – taking the bus, cycling, walking, carpooling – reduces Edmonton’s greenhouse gas emissions and helps to mitigate climate change. So take a good look at your location, because it plays a big part in determining how reliant you are on your personal vehicle.

A Walkable Location is a Healthy Choice
Whether you’re buying a new or existing home, 800 metres (about 8 downtown blocks) is generally considered a walkable distance for most individuals. Housing that’s located in a walkable neighbourhood near public transit, employment centres, schools, and other amenities is often considered to be location efficient. And a walkable location promotes an active lifestyle, which contributes to better health.

Every Home in Edmonton has a Walk Score. What’s Yours?
Walk Score® is a large-scale, publicly accessible walkability index that assigns a numerical walkability score for any address in Edmonton. To learn more, Please visit: walkscore.com

And be sure to look for Walk Score on the Multiple Listing Service ® (MLS), as many listings are starting to include it.

Taking Transit Reduces Transportation Costs
Being close to transit gives you the opportunity to cut down on the amount you drive, which helps reduce transportation costs.

Increase Your Location Efficiency
Here’s something for home buyers to consider: Depending on where you work and your lifestyle, purchasing a home in a mature area may increase your location efficiency. Household energy costs include your transportation, so improving your location efficiency can reduce your overall household bills. Also, purchasing a home in a mature area keeps Edmonton’s existing neighbourhoods vibrant and sustainable into the future.

Visit MyHEAT (myheat.ca) to view the amount and location of invisible waste heat leaving your home, community, and city!
GREEN FACTS AND TIPS: LEVERAGING YOUR LOCATION

Jobs
Living close to work is one of the greenest moves you can make. Your daily commute becomes low carbon, and the convenience, the health benefits, and the time-saving advantages of not driving to and from work can all have a positive impact on your quality of life.

Transit
Generally, a home is considered to have good access to transit if it’s within a 5-minute walk of a regular city bus stop, and within a 10-minute walk of a rapid bus or rail. The primary goal with locating close to transit is that daily trips (such as commuting to work or school) are possible on transit.

Amenities
Finding a home in a neighbourhood with convenient access to services, groceries, restaurants, and shopping means you’ll spend less time in your car.

Parks and Green Space
Being able to quickly and easily get to a walking trail, a dog park, or sports field can have a positive impact on your family’s lifestyle. In Edmonton, most homes are within a 5-minute walk from a green space.

Walking Maps
Check out Edmonton’s walking maps at: edmonton.ca/walkmap
Reduce Energy Costs with the Right-Sized Home
Choosing a home size that meets but doesn’t exceed your family’s needs can save you money on your monthly heating and electricity bills.

Smaller Home Sizes Make a Big Difference for Edmonton’s Future
As a rule, a smaller home uses less energy than a larger one of a similar age. Attached homes like duplexes, row houses, and apartments use less energy on a square footage basis than single-detached homes due to shared walls, which reduce exposure to outside temperatures. Whenever less energy is used in Edmonton, it helps us contribute to our goals of using less fossil fuel and reducing greenhouse gases, which helps mitigate climate change while saving you money.

Home Size Quick Math: 500 Sq. Ft. per Person
Sometimes bigger isn’t necessarily better. Look for a home that gives you the space you and your family need, but think twice about going too big. Depending on your family’s needs, aim for 500 square feet per person. Look for homes that have an open plan or can be easily renovated to create an open plan in the main living areas. Open-plan homes feel more spacious even with a smaller total square footage.

Size of Homes Being Built in Edmonton (2012)

- **40%**
 - LESS THAN 1451 SQ. FT.
 - 1451 TO 2050 SQ. FT.

- **40%**
 - 2051 TO 3000 SQ. FT.
 - 3001 TO 4500 SQ. FT.

- **5%**
 - LARGER THAN 4500 SQ. FT.
Smaller Homes are Easier to Clean, Cheaper to Remodel
Small is beautiful. In addition to being more cost-effective and energy-efficient, a smaller home is also easier to clean, as there is less physical space to become dirty. Smaller homes are also cheaper to maintain and remodel as less house means less to fix and update.

Reduce Home Space: Put a Halt to Hallways
A quick way to determine if a home uses space well is to look at how much space is taken up by hallways. Open concepts that eliminate hallways can make a smaller house feel much bigger. Additional tips for loving smaller homes can be found at: hgtv.com/design/topics/small-homes
Size of Homes: Then and Now

GREEN FACTS AND TIPS: AVERAGE HOME SIZES IN CANADA

The following are considered by ENERGY STAR® and LEED Canada for Homes® to be average home sizes.

A smaller-than-average home generally costs less to buy and less in monthly energy and maintenance costs.

<table>
<thead>
<tr>
<th>DETACHED HOUSE SIZE</th>
<th>NUMBER OF BEDROOMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>93 sq. m (1,000 sq. ft.)</td>
<td>1</td>
</tr>
<tr>
<td>148 sq. m (1,600 sq. ft.)</td>
<td>2</td>
</tr>
<tr>
<td>204 sq. m (2,200 sq. ft.)</td>
<td>3</td>
</tr>
<tr>
<td>260 sq. m (2,800 sq. ft.)</td>
<td>4</td>
</tr>
</tbody>
</table>

Source: ENERGY STAR for Homes, V3 & CaGBC LEED Canada for Homes V4
3 ENERGUIDE RATING SYSTEM

EnerGuide: Canada’s Energy Rating and Labeling System
EnerGuide™ is Canada’s energy rating and labeling system that certifies the energy efficiency of products and homes (new and existing). The EnerGuide rating allows you to easily compare the advantages of an energy-efficient major household appliance (dishwasher, furnace, etc.) to see how it measures up against the range of products sold in Canada.

How Does Your Home’s Energy Performance Stack Up?
EnerGuide also provides a standard measure of your home’s energy performance. The EnerGuide label shows you (and future buyers) approximately how energy-efficient your home is while allowing you to compare the energy efficiency of your home with similar homes in your neighbourhood and across Canada. It’s easy to understand and gives you comfort knowing that the home has been professionally assessed by a third party.

If you’re planning to renovate or sell your home, the rating shows your home’s present level of energy efficiency and projects the level it could achieve with recommended upgrades.

Energy Ratings Help Edmonton Measure Environmental Progress
The City of Edmonton actively encourages the use of EnerGuide as a way for everyone to engage in energy conservation. The EnerGuide rating also provides a basis for Natural Resources Canada (the federal agency that administers the EnerGuide for Homes program) to assess the estimated greenhouse gas emissions of buildings. This in turn helps the City of Edmonton measure progress towards its climate change mitigation goals.

For a New House, Look for a Label that Indicates that ‘This House’ Uses Less Energy on an Annual Basis than ‘A Typical House’
As of 2016, the EnerGuide rating system has changed. The new EnerGuide labels show the gigajoules (GJ) per year that a house uses. Gigajoules per year is a unit of measurement for energy on an annual basis. The higher the GJ per year number the less efficient the home is, whereas the closer to zero the GJ per year measurement is the more efficient the house is. Homes that produce more energy than they use will have a rating of zero.
Explanation of New EnerGuide for Houses Label

After an EnerGuide evaluation is performed on your home, an EnerGuide Label will be given to you to affix to your electrical panel.

1. Information about the evaluation for the homeowner
2. EnerGuide home rating
3. EnerGuide rating scale
4. Calculation of the rating
5. Breakdown of the rated annual energy consumption
Not all houses are created equal and you can’t tell the energy efficiency of a house just by looking at it. So be sure to ask for the EnerGuide annual energy consumption of the home, as this will vary, even in homes built in the same neighborhood.

If you come across an older EnerGuide label when shopping for an existing home, take note of the differences. The old label used an arbitrary system with ratings ranging from 1 to 100, where higher numbers represented an increased efficiency. The new EnerGuide label rates homes using energy (in GJ) to show approximately what the home will use over a year. Therefore the lower the number the lower the consumption and the more money in your pocket!

Live Comfortable, Use Less Energy
- Enjoy paying lower energy bills in your EnerGuide home
- Feel good about how your purchase decisions are helping to reduce your carbon footprint
- Enjoy living in a comfortable and efficient home

EnerGuide Label and Utility Costs
The EnerGuide label breaks the GJ per year into electricity and natural gas, making it easy for you to calculate the anticipated energy costs of the home. In order to calculate the annual energy costs, multiply the GJ per year by the current utility costs. Electricity consumption and rates on electricity bills are generally in kilowatt hours (kWh); but don’t worry! You can convert the GJ estimate on the label to kWh by multiplying by 277.8.

Reduce Your Energy Consumption
It is important to note that the amount you pay for energy depends on many factors in addition to the design of your house. These include the choices made by occupants like turning off lights, taking shorter showers, and turning down the thermostat. To further reduce your utilities, encourage your family to be aware of their consumption!
To learn more, visit: edmonton.ca/GreenLivingGuide
EnerGuide for Houses

Older house, not upgraded
Older house, upgraded
Energy-efficient upgraded older house or typical new house
Energy-efficient new house
Highly energy-efficient new house
House requiring little or no purchased energy (net zero)

GREEN FACTS AND TIPS: ENERGUIDE

Buying or Selling a home? Make sure you have an EnerGuide Rating first!

Builders can apply to have a newly built home tested and rated prior to occupancy. As a buyer, request to see the EnerGuide rating for all the new homes you are considering. And whether you are buying or selling an existing home, have a qualified energy advisor conduct an EnerGuide Evaluation. All homes are not created equal, and an EnerGuide home evaluation and rating can help inform your decisions.

EnerGuide and Energy Advisors in Your Area

You can find more information about EnerGuide and locate energy advisors in your area at: www.nrcan.gc.ca/energy/efficiency/housing/service-providers/15807

A home that produces all the energy it needs would be 0 GJ per year on the EnerGuide scale.
The Building Envelope: Your Home’s Magic Membrane

The building envelope is the physical separator – the walls, roof, and foundation – between the inside and outside of the building. Just like the skin on your body, it serves a number of complex functions and interacts with all the various activities that go on in and around it.

The design, configuration, and performance of the building envelope has a direct impact on your comfort, your home heating bills, and your home maintenance costs. The cost to heat your home is affected by your home’s overall surface area-to-volume ratio, the number of projections such as balconies and dormers, and the quality and design of the envelope itself.

The envelope is also the longest lasting and most difficult piece of a home to change, so it should be a top priority when building a home.

Where Does the Heat Go?

Efficient Envelopes Deliver Good News for Our Future

Ensuring that your home’s envelope is air-tight and well-insulated improves the energy efficiency of your home. Whenever less energy is used in Edmonton, it helps us contribute to our goals of reduced fossil fuel use and greenhouse gases which helps to mitigate climate change.

Does Your Building Envelope Deliver Outstanding Energy Performance?

If you’re looking to buy or renovate an existing home, an EnerGuide energy rating (ER) confirms the performance of the envelope and provides recommendations on where to make improvements. You can ask the seller if they’ve completed an EnerGuide test, or make it a condition of sale. Please refer to the EnerGuide Rating System chapter for more details, or visit the EnerGuide website at: nrcan.gc.ca/energy/efficiency/housing/new-homes/5035

Insulation R-Value (or RSI)

The Alberta Building Code specifies minimum insulation standards, but insulation levels that exceed the building code are recommended if you want to reduce your home’s energy consumption and costs. Insulation effectiveness is measured by the thermal resistance.

The thermal resistance of an object is measured using R-value or RSI. R-value is an imperial unit whereas RSI is a metric unit. Until recently in Canada, the building industry used the R-value of materials; however RSI is now becoming more common. An object’s thermal resistance can either be effective or nominal. Nominal is the value of the material before installation, whereas the effective value is the actual thermal resistance to heat loss after installation and is therefore more meaningful when designing and modeling a home. For more information on R-value and RSI, please visit: homeguides.sfgate.com/rsi-insulating-70075.html

The effective R-values shown in the image below are examples to be used as a guide. Each home’s R-values will be as unique as it’s design, location, orientation, building envelope, and mechanical equipment. In order to design or renovate a home to perform better than code, engage with a building science expert, such as a Certified Energy Advisor, to guide you through the process. To find a Certified Energy Advisor in your area visit: nrcan.gc.ca/energy/efficiency/housing/new-homes/16631

For more information on R-values and what type of energy savings you can expect from improving different components of your home visit: cmhc-schl.gc.ca/en/co/grho/grho_011.cfm
Building to Code Achieves the Following Effective R-values (RSI):
Building better will achieve higher energy efficiency

Note that a Heat Recovery Ventilator (HRV) - see Ventilation Information chapter - was assumed to be in use for both the building code and net zero R-value examples above, without an HRV the R-values will typically increase.

Window Location and Size
Windows and doors are generally the least thermally efficient areas of the building envelope, so the location and size of windows need to be carefully designed to maximize natural daylight and views while minimizing heat loss and ambient noise.

Window Performance: What to Look for
A number of factors affect window performance. Ask your builder for the following technical details about the windows (as provided by the manufacturer):

» **U-Value:** The amount of heat loss a window allows. The lower the value, the better the window performance. A double-paned, argon-filled low-E window has a U-value of 0.33 with fiberglass frames and 0.39 with wood or vinyl frames.¹

» **Solar Heat Gain Coefficient (SHGC):** The amount of heat from sunlight that passes through windows. In the Edmonton climate, generally a higher SHGC allows more solar heat to be captured, lowering energy consumption for heating. SHGC is

¹ CHBA Builder’s Manual 2008
expressed as a fraction of a number between 0 and 1. In the context of passive solar building design in Edmonton, the aim of the designer is normally to maximize solar gain within the building in the winter so a number closer to 1 is better. This of course means you will also maximize solar gain in the summer months. So combining this approach with shading strategies in the summer months (for example, a deciduous tree in front of a south-facing window) works to minimize winter heating bills and summer overheating.

» **Energy Rating (ER):** The energy rating (ER) value is calculated using a formula that balances a product’s U-value with its potential solar heat gain coefficient (SHGC) and its airtightness. The higher the number, the more energy-efficient the product. ER values normally range from 0 to 50, with an ENERGY STAR-qualified window in Edmonton’s climate being 29.

Learn more about these ratings in the Glossary of Terms.

Other Window Choices
Other window choices include the following:

» **Triple-pane windows** are more energy-efficient than double-pane windows and can reduce outside noise, reduce temperature fluctuations, and increase comfort near windows in the summer and winter.

» **Low-E glass coatings** reflect both infrared and ultraviolet light. This helps to reduce heat transfer and prevent furnishings from fading.

» **Argon gas-filled panes** are better insulated than those filled with air.

Save Significantly with an Energy-Efficient Building Envelope
A well-insulated home with energy-efficient windows provides optimal comfort with no drafts or cold spots. An energy-efficient home is a “future-proofed” home, giving you peace of mind in a world of rising energy prices. Space heating is the single largest consumer of energy in your home, accounting for over 2/3 of the total annual energy consumption.¹ A high-performance, efficient building envelope can significantly reduce your home heating costs.

(iea.org/publications/freepublications/publication/technology-roadmap-energy-efficient-building-envelopes.html)
The Blower Door Test Shows if Your House is Leaking Heat

When your home’s exterior walls are leaking due to penetrations in the building envelope, heat is lost to the outside, meaning your heating system has to work harder to heat your home. Not only do you end up paying more in heating bills, but also your house can feel drafty and uncomfortable. A Blower Door Test checks the leakage rate of your home. A reading of 2.5 ACH (Air Changes per Hour) is considered to be a typical air leakage rate, whereas a Passive House has a much tighter envelope with an air leakage rate of only 0.6 ACH meaning much less heat is lost. Alternatively, in summer months, a tight envelope can help your home stay cool and reduce costs associated with cooling your house.

To view a demonstration of a blower door test, visit: youtu.be/icZG05XU9pM

Blower Door Test: How it Works
Energy Modelling and the Building Envelope
An energy model analyzes multiple attributes of the home including the building envelope. The energy model can be used to run simulations on envelope design changes to see which combination of materials will be the best solution. Changing the envelope details in the design phase does not cost you anything, changing the envelope details during construction is very costly. If you are involved in the design of your new home, and you are interested in making it as energy efficient as your budget will allow, work with your builder and ask about using an energy model as part of the design process.

GREEN FACTS AND TIPS: BUILDING ENVELOPE

Insulation
Located inside the building envelope – the walls, roof, and under the slab – insulation helps slow the transfer of heat through the building envelope. In practical terms, the insulation is primarily responsible for helping keep heat inside the home when it's cold outside and keeping it cool inside on warm days.

If you’re looking to upgrade the insulation in an existing home, hiring a qualified professional to conduct a home energy audit is recommended. A Certified Energy Advisor will inspect the type, quality and degradation of your existing insulation and recommend solutions to improve the performance of your home.

There are multiple types of insulation, each with different properties to consider: blown-in cellulose, spray foam, as well as various types of batt and cellulose fibre. Seeking the advice of a qualified building envelope professional is strongly advised when you’re planning to improve the insulation of different components of your home’s envelope system.

Good Windows
Energy-efficient windows, doors, or skylights, when combined with improved envelope insulation, can significantly reduce your home energy costs, while making your home quieter and more comfortable. Look for ENERGY STAR-qualified windows as an easy way to choose energy-efficient windows. For ENERGY STAR-rated windows, there are 4 climate zones in Canada (A, B, C, and D), based on an average annual temperature indicator called a heating degree-day (HDD). Zone A is the mildest and Zone D is the coldest. ENERGY STAR Zone D-rated windows are more efficient than ENERGY STAR Zone C-rated windows (C is the minimum rating allowed in Edmonton for the window to meet the ENERGY STAR standard). Look for windows with the highest R-value.
Ventilation
As homes become more efficient, they become increasingly air-tight, which increases the important need to maintain sufficient fresh air. Highly efficient and airtight homes will typically have a Heat Recovery Ventilator (HRV) that provides abundant fresh air into the home while minimizing heat loss. The HRV allows for fresh air to enter into the home but in a controlled way so that the air can be filtered first. To learn more, please read the chapter Ventilation Information.

Air Leaks
Airtightness (sealing) is critical to reducing leakage of air between indoors and out. In existing homes, caulking and weatherstripping are effective air-sealing techniques that offer quick returns on investment, often a year or less. Caulking is generally used for cracks and openings between stationary house components such as around door and window frames. Weatherstripping is used to seal components that move such as doors and operable windows.

Visit the NRCan online publication of “Keeping the Heat In”, which provides details on how to air seal your home: nrcan.gc.ca/energy/efficiency/housing/home-improvements/15768
The Art of Ventilation: A Breath of Fresh Air
On average, we spend about 90% of our time indoors, so we need an abundance of fresh air in our homes. That’s why ventilation is so important. Ventilation helps control moisture, which minimizes mould growth and structural damage.

The Characteristics of a Well-Ventilated Home
In naturally ventilated homes, look for windows that are strategically placed to encourage cross-ventilation so that during the times of the year when they’re open, they can cool as much of the home as possible. Minimum building code requires exhaust fans in all bathrooms (preferably on timers) and in the kitchen, which should be used to prevent moisture buildup.

In New Homes, a Heat Recovery Ventilator (HRV) is Important
An HRV is an air exchanger that delivers filtered, fresh outside air to living rooms and bedrooms and extracts stale air from high-moisture areas such as bathrooms, kitchens, and laundries. It also saves energy by recovering 60 to 90% of the heat from the air that’s being extracted.

In any home, an HRV can provide healthy indoor air quality, with minimal energy consumption. However, you don’t want to just ventilate the home—you also want to recover the exiting heat so it can be used to heat the incoming outdoor air. This is efficient and saves you money!

Alternatives to HRVs
The low-technology version of a mechanical ventilator in homes is the bathroom exhaust fan or kitchen exhaust fan. Switches and timers can be installed to turn the bathroom fans on for periods of time to increase ventilation. However, in general, these systems don’t have heat recovery, so the energy-saving potential of an HRV isn’t utilized.
Heat Recovery Ventilator

Heat Recovery Ventilator: How It Works

1. Warm, stale air is drawn from kitchen and bathrooms
2. Fresh, cold air from outside is drawn in
3. Fresh, heated air is sent to bedrooms and living areas
4. Stale, cool air from inside is exhausted outside
Improve Your Indoor Air Quality, Reduce Your Heating Costs
An HRV improves your indoor air quality, helps overcome moisture-related health and structural problems, and reduces heating costs. An HRV can also reduce household odours, as fresh air is constantly being provided to the home.

HRV Home System Helps People with Respiratory Sensitivity
Did you know that according to the Canadian Lung Association, over 30% of Canadians suffer from some sort of respiratory sensitivity? Homes can be designed with these Canadians in mind. According to Canada Mortgage and Housing Corporation (CMHC), homes equipped with hard-surfaced flooring (no carpets) and HRVs are the best choice. Learn more by reading CMHC’s "Research House for the Environmentally Hypersensitive", available at: national-toxic-encephalopathy-foundation.org/researchhouse.pdf

GREEN FACTS AND TIPS: HEAT RECOVERY VENTILATORS (HRVs)

What Types of Homes Are Best for HRVs?
Heat recovery ventilators (HRVs) can be used in all building types, small and large. In larger condominium complexes, ventilation systems with heat recovery can be centralized for the whole building. HRVs can be retrofitted into existing homes to improve air quality and save energy. It especially makes sense to install HRVs in homes that have undergone energy efficiency retrofits and are very air tight. Technically, a very air tight home is one with a blower door test result of approximately 2 air changes per minute or less.

HRV Maintenance
HRVs require routine maintenance and periodic adjustment. If the home you’re interested in has an HRV, ask when it was last serviced or adjusted. Poorly maintained HRVs can cause imbalances where the house can become over-ventilated or under-ventilated. Some HRVs are completely separate of other systems in the house, while others are connected to a forced-air furnace system.
The Heating System: Your Home’s Biggest Energy User
Your home heating system is the biggest energy user in the home. On average, home heating accounts for about 2/3 of your home’s energy use, so making the right choice is important.

Canada’s Average Home Energy Usage (2013)

- 63% SPACE HEATING
- 1% SPACE COOLING
- 4% LIGHTING
- 12% APPLIANCES
- 20% WATER HEATING

Source: nrcan.gc.ca/energy/products/categories/lighting/13730

Natural Gas Usage per Year for Edmonton Single-Family Home
The average single-family home in Edmonton uses about 120 gigajoules (GJ)1 of natural gas per year which produces about 6.7 tonnes of greenhouse gas (GHG).

While a variety of home heating systems are available, a gas-fired heating appliance is the most typical in Edmonton. Alternatives to gas are generally electricity based, including air source and ground source (geothermal, geoexchange) heat pump systems that indirectly create GHG emissions because most of Edmonton’s electricity comes from burning coal.

1 Calculated average for Edmonton for the 2015 year based on City-wide consumption in single family homes.
Gas-Fired Furnaces
Most homes in Edmonton are heated using a forced-air furnace in which natural gas combustion heats the air, which is then blown by a fan to living spaces through a network of ducts and vents.

For all gas-heating appliances, look for the EnerGuide or ENERGY STAR label (or both) to determine the energy efficiency of the appliance. Efficiency is measured by annual fuel utilization efficiency (AFUE). An AFUE of 90% means that 90% of the energy in the fuel becomes heat for the home and the other 10% escapes up the chimney and elsewhere. Look for an efficiency above 95% as best practice. AFUE doesn’t include heat losses from the duct system or piping, which can be as much as 35% of the appliance output energy when ducts are located in the attic, so ensuring they are sealed is important.

Condensing Furnaces and Boilers
A condensing furnace or boiler condenses the water vapour produced in the combustion process and uses the heat from this condensation to heat the home. All new furnaces have an AFUE of 90% or better, but a lot of old ones are still in operation. The cost of a new furnace for an average home can usually be recouped in energy savings in less than 10 years.

High-Efficiency Furnace + Programmable Thermostat = Savings
Enjoy the warm feeling you get knowing that your heating system is keeping your home comfortable, saving you money, and reducing your carbon footprint. Through the use of a programmable thermostat, a planned temperature drop of 1°C over an eight-hour period can save about 2% on your heating energy consumption. If you are away from home for more than three or four hours, it is worthwhile to turn down the temperature. Additionally, replacing an older furnace with a new one will reduce your heating costs; if you replace a furnace operating at 85% efficiency with a new one operating at 92% efficiency, you have directly reduced your heating costs by 7%.
Don’t Wait to Replace your Furnace
A high-efficiency furnace has an AFUE rating of 90 to 98%. This means that a furnace at the high end of this range will convert 98% of the combusted natural gas to usable energy, with the remaining 3% exhausted to the outside. By comparison, many older furnaces have an AFUE of only about 60%, meaning 40% of the fuel is wasted. So replacing your furnace starts to save you money right away!

Look for this symbol when you’re shopping for new appliances or buying a new home.

ENERGY STAR
ENERGY STAR is the international symbol of premium energy efficiency. Products that display the ENERGY STAR symbol have been tested according to prescribed procedures and have been found to meet or exceed higher energy efficiency levels without compromising performance.

The ENERGY STAR website, operated by Canada’s Office of Energy Efficiency, lists all the different appliances and products that have the ENERGY STAR qualification. The site also highlights the most efficient products in a variety of different categories. You’ll be surprised at the range of products there are for homes. To learn more, please visit: nrcan.gc.ca/energy/products/energystar/12519
GREEN FACTS AND TIPS: HOME HEATING

Programmable Thermostats
Programmable thermostats allow you to program your furnace to different temperature settings at different times of the day and week to maximize energy savings without compromising your comfort. You can buy a simple ENERGY STAR-rated mercury-free programmable thermostat for about $30 to $80.

Are There Other Types of Heating Systems?
Yes. The most common alternative to a gas furnace is a gas boiler connected to a radiant heating system. Radiant heating systems are more comfortable and energy efficient than forced (moving) air systems because they heat the home without excess air movement. A form of radiant heating that is becoming more common is underfloor heating. Radiant heating systems are also healthier than forced air systems as there is minimal air recirculation, which minimizes exposure to dust, pollen, and other pollutants found in a home. The drawback of radiant heating systems are that they are more costly than forced air systems.

Alternatives to gas heating systems can include electricity based resistance heating as well as air-source and ground-source (geothermal) heat pump systems. Heat pump systems move thermal energy (heat) from one area to another and have the advantage of providing both heating and cooling within one system. For additional details regarding heat pumps, please read the Other Green Innovations chapter.
Water Heating: Your Second-Biggest Energy User
As the pie chart of Canada’s Average Home Energy Usage (Chapter 6) shows, water heating uses about 20% of the total energy consumed in a home and is the second-largest energy user after space heating. A hot water heater is one of the most straightforward pieces of equipment to upgrade and also provides a good opportunity for energy savings.

Factor in the Energy Factor (EF)
Several different types of water heaters are available, and prices and energy efficiency vary. The best measure of water-heater efficiency is the energy factor (EF), which compares the energy supplied in heated water to the total daily energy consumption of the water heater. An EF of 0.67 or higher is considered the benchmark to be looking for.

Natural Gas Storage Water Heaters
These types of water heaters are the most common in Edmonton. Their cylindrical tanks offer a ready reservoir (storage tank) of hot water. Since water is constantly heated in the tank, energy can be wasted when the tank isn’t in use. (This is called standby heat loss.) Therefore, it’s important to select the right size of tank. According to Natural Resources Canada’s Office of Energy Efficiency, a single family with 4 family members, 2 bathrooms, a dishwasher, and a clothes washer requires a 180-litre (40 gallon) tank.

Extra Water Tank Insulation = Extra Savings
Some storage water heater models have a heavily insulated tank, which significantly reduces standby heat losses and lowers annual operating costs. Look for models with tanks that have a thermal resistance (R-value) of R-12 to R-25. A high R-value increases the energy factor of the water heater. Look for ENERGY STAR-rated high-efficiency hot water tanks. Gas water heaters also have venting-related energy losses. Either a fan-assisted gas water heater or an atmospheric-sealed combustion water heater reduces these losses.
Tankless Water Heaters: Energy Efficiency’s in the House

Tankless water heaters, also known as on-demand or instantaneous water heaters, provide hot water only as it’s needed. Since they don’t produce the standby energy losses associated with storage water heaters, they can save you money. They’re also mounted on the wall so they save on floor space as well.

Tankless water heaters typically provide hot water at a rate of 8 to 15 litres (2 to 5 US gallons) per minute. Gas-fired tankless water heaters produce higher flow rates than electric ones and are generally cheaper to operate. However, while running, on-demand gas water heaters use more gas than a regular hot water storage tank and may require a larger gas supply line. Similarly, electric on-demand heaters require significantly larger electrical draw than storage tanks and may be restricted by the home’s electrical service size.

On-demand water heaters can be between 19 and 53% more energy-efficient than conventional storage-tank water heaters. The greatest potential improvements are in homes that use the least hot water, such as small dwellings, households using hot water only a few times in the day, and places with very efficient fixtures. However, installing an on-demand water heater at each hot water outlet can be very cost prohibitive. To determine if this is appropriate for your home, work with an experienced mechanical professional to calculate the payback.

Lower Your Energy Costs with a Tankless Hot Water Heater

The initial cost of a tankless water heater is higher than that of a conventional storage water heater, but wall-mounted tankless water heaters take up much less space, typically last longer, and have lower energy costs which could offset the higher purchase price.

1 greenbuildingadvisor.com/blogs/dept/musings/are-tankless-water-heaters-waste-money
Drain Water Heat Recovery
Drain water heat recovery and drain-line heat exchangers: These systems are essentially a coil that goes around the drain line (coming from hot water sources like sinks, showers, bathtubs, dishwashers, and clothes washers) that capture up to 60% of the waste heat passing through the drains.

The heat that’s recovered is returned to the system which lessens the amount of energy required to heat additional hot water. These systems have no moving parts, so nothing can wear out or get clogged. Only fresh water goes through the pipes; hair and other materials go through a separate pipe. Drain water heat recovery systems can reduce hot water energy needs for showers by 40 to 60%! These systems, including installation, can be one of the most cost-effective energy efficiency improvements in a home.

1 cmhc-schl.gc.ca/en/inpr/su/sufepr/sufepr_003.cfm
Green Facts and Tips: Hot Water Heaters

Preventing Legionella Bacteria
It is important to remember to clean and disinfect all mist-producing items in your home such as showerheads, hot tubs, whirlpool baths, and humidifiers. Home hot water heaters should also be set at a minimum of 60°C; however, in order to reduce the risk of scalding, ensure that a qualified plumber installs mixing valves so that the temperature at the tap is not higher than 49°C. To learn more, please visit the Health Canada website at: phac-aspc.gc.ca/id-mi/legionella-eng.php

Excessive Water Temperature
Water that’s too hot is not only more expensive but can also be dangerous for your family.

Tankless Water Heaters Last Longer
Most tankless water heaters have a life expectancy of more than 20 years. They also have easily replaceable parts that extend their life by many more years. In contrast, storage-tank water heaters last 10 to 15 years.

Have Your On-Demand Water Heater Installed by a Pro
It's important to ensure that on-demand water heaters are installed by qualified contractors and are properly vented. The condensing models require access to a drain.
Green Building Certification
A green building certification provides a framework of green initiatives to follow during design and construction, as well as assurance that once constructed, the home’s green claims have been third party verified.

Get to Know the Green Rating Systems
Green rating systems play an important role in promoting green homes. There are some – like EnerGuide™ and Passive House™ – that focus solely on energy performance. Others such as R-2000, BUILT GREEN®, and LEED® consider a wider set of green criteria important to Edmontonians, such as indoor air quality and local material use.

Green Certification Can Increase Resale Value of a Building
According to a study by the UCLA Institute for the Environment and Sustainability, green certification can add an average of 9% to the resale value of buildings. To learn more, visit: issuu.com/nilskok/docs/kk_green_homes_071912/1

A similar, but more involved data study from Canada, found that LEED certification increases the resale price of condominiums by between 5 and 14%. For more information, visit: www.td.com/document/PDF/economics/special/GreenCondos.pdf
GREEN FACTS AND TIPS:
ENERGY RATING SYSTEMS

BUILT GREEN
BUILT GREEN is a popular green building rating system that applies to houses, row houses, condominiums, and multi-storey residential towers. It includes an energy requirement (EnerGuide label) and therefore requires a Certified Energy Advisor to be involved with the project. Additional categories include materials and methods, indoor air quality, ventilation, waste management, water conservation, and building practices. For more information, please visit: builtgreencanada.ca

ENERGY STAR for New Homes
The ENERGY STAR for New Homes initiative promotes energy efficiency guidelines that enable new homes to be more energy-efficient than those built to minimum provincial building codes. Home builders must be licensed for ENERGY STAR for New Homes. To learn more, please visit: nrcan.gc.ca/energy/efficiency/housing/new-homes/5057

LEED
LEED (Leadership in Energy and Environmental Design) for Homes program applies to houses, row houses, condominiums, and multi-story residential towers. LEED certification includes energy performance as well as connectivity to the surrounding community, site activities, landscaping, water usage, materials, durability, home size, and air quality. Pursuing LEED for Homes certification requires the involvement of a recognized Provider Organization (www.cagbc.org/CAGBC/Programs/LEED/GreenHomes/Local_Support.aspx) and Green Rater. For more information, please visit: cagbc.org/homes

Passive House
Passive House is a rigorous program with strict energy performance requirements. Buildings are designed to reduce the need for energy use and then mechanical systems are sized correctly to reduce consumption when required. A Passive House designer and/or builder is typically required as part of the process and a specialized software is used to model the home from design to end of construction. To learn more, please visit: passivehouse.ca

R-2000
R-2000 includes requirements relating to energy efficiency, indoor air quality, and the use of environmentally responsible products and materials. The emphasis of R-2000 is energy efficiency and therefore the program requires a Certified Energy Advisor to be involved with the project. For more details, please visit: nrcan.gc.ca/energy/efficiency/housing/new-homes/5085
Your Kitchen: The Source for up to 12% of Your Energy Bill

The average kitchen accounts for 12% of a home’s total energy bill.\(^1\) If your refrigerator and dishwasher are more than 10 years old, you can most likely reduce your utility bills by replacing these appliances with high-efficiency models. There’s an initial investment to upgrade old appliances, but chances are you’ll appreciate the superior performance and lower utility bills.

Be sure to dispose of your old appliances properly at your local Eco Station. Learn more at: edmonton.ca/ecostations

Energy-Efficient Appliances have the ENERGY STAR Label

» An ENERGY STAR label means that a product has been third party certified to meet stringent energy requirements.

» Ovens and ranges are not eligible for the ENERGY STAR program, given the inherent inefficiency of these appliances. It’s estimated that only 6% of the energy used to power an oven is absorbed by the food!\(^2\)

» To find the most energy-efficient electric appliances, look for the ENERGY STAR label at your retailer. More ENERGY STAR information is available from Natural Resources Canada at: nrcan.gc.ca/energy/products/energystar/why-buy/13631

\(^1\) nrcan.gc.ca/energy/products/categories/appliances/13630
\(^2\) Rocky Mountain Institute, infohouse.p2ric.org/ref/32/31144.pdf
Compare the EnerGuide Labels
Federal law requires that the EnerGuide label be placed on all new electrical appliances manufactured in or imported into Canada, and that the label indicate the amount of electricity used by that appliance. Although the EnerGuide label shows the energy efficiency of the appliance relative to similar models, you can easily compare EnerGuide ratings between competing appliances. The rating is the total annual energy the appliance will consume yearly under average operation.

Quick Math: Calculate Operation Cost of Energy-Efficient Appliances
Energy-efficient appliances aren’t much more expensive, if at all, than regular appliances. When you add up your monthly energy savings, you may find that you can pay back the extra amount you paid for your energy-efficient appliance in less than one year. To determine how much your energy-efficient appliance costs to operate, multiply the annual kilowatt hours (kWh) on the EnerGuide label by the current electricity or natural gas rate found on your utility bill.
GREEN FACTS AND TIPS: APPLIANCE EFFICIENCY

To maximize your savings, select the smallest possible appliance size that meets your needs.

Dishwashers
80% of the energy used by a dishwasher goes towards water heating; the rest runs the motor and the fan.¹ Try using an energy-efficient or lower-heat cycle and you may see a big change.

Compact dishwashers use less water and energy per wash, but if you have to use it more than once a day, it’s likely more efficient to use a standard size.

Dishwashers and refrigerators operate most efficiently when they’re full. The dishwasher uses the same amount of water whether half full or completely full, and more items in a fridge help to keep the internal temperature cool.

Don’t position your dishwasher next to the refrigerator. The heat produced by the dishwasher causes your refrigerator to work harder.

Refrigerators
The style of refrigerator can affect energy use. In general, models with the freezer on the top or bottom use up to 25% less energy than comparable side-by-side refrigerator/freezer models.² Remember, if you buy a new fridge and you keep using your old one as a second refrigerator in the basement or garage, you will not see these energy savings!

Oven Ranges and Hoods
The most energy efficient cooking system is an induction range, which heats only the pot, in combination with a recirculating, or ductless, range hood and a heat recovery ventilator (HRV) exhaust intake in the kitchen that handles the smoke and odours.

² US Department of Energy, energy.gov/energysaver/kitchen-appliances
Clothes Dryers

Clothes dryers use a lot of energy so the opportunity for energy savings is large. A typical system simply directs the air outside via the dryer exhaust. New technology includes condensing dryers and heat pump dryers.

A condensing dryer recovers much of the waste energy from the hot, humid air, drains the excess moisture away, and funnels the remaining exhaust air into an adjacent space where it can offset heating energy for most of the year in our climate.

A heat pump dryer does not require a vent; instead, the pump reuses the heated air and through condensation, funnels the moisture into a drain or collection tank. This system offers more than double the energy efficiency compared to a conventional electric dryer.

For the best energy savings, consider hanging your clothes to dry. This will also increase the lifespan of your items, saving you the expense of having to replace them.
10 WATER CONSUMPTION

Water Conservation = Cost Conservation
Simple, low-cost water conserving fixtures can reduce your water consumption and water bills significantly. They also reduce your energy costs by lowering the amount of water that needs to be heated. By switching to energy-efficient and water-wise low-flow fixtures and appliances, homeowners can save hundreds of dollars a year. Learn more at: epcor.com/learn/efficiency-conservation/inside-your-home

Efficient Fixtures Make for Effective Future
In 2008, the City adopted a Water Efficient Fixtures Bylaw, requiring that all new homes and permitted residential renovations be installed with low-flush toilets (maximum 6 litres per flush), low-flow showerheads (maximum 9.5 litres per minute) and low-flow faucets (maximum 8.3 litres per minute). Reducing water consumption is a good practice that lessens the pressures on the North Saskatchewan River. Also, water treatment requires energy and produces greenhouse gases, so reducing water usage contributes to climate change mitigation.

LOW-FLOW FAUCET: 6.6 LITRES PER MINUTE

LOW-FLOW SHOWERHEAD: 7.6 LITRES PER MINUTE

LOW-FLUSH TOILET: 3 TO 6 LITRES PER FLUSH
Be Water-Wise: What to Look for in Household Products

WaterSense® is a labeling program that aims to decrease indoor and outdoor water use through water-efficient products and simple water-saving practices. Look for the WaterSense label to find products which have been independently certified by a third-party licensed body to save water without sacrificing performance or quality.

Edmonton Water Usage: The Numbers
An average single-family Edmonton household has 2.4 people and consumes 18.5 cubic metres (18,500 litres) of water per month, which is the equivalent of 230 litres of water per person per day for indoor and outdoor use.¹ You no longer have to worry about being cold in a shower with a low-flow fixture; the pressure and performance of newer low-flow fixtures are specifically designed to feel like their high-flow counterparts.

Edmonton Water Consumption

³ | 34 % SHOWERS/BATHS
² | 19 % LAUNDRY
₁ | 29 % TOILETS
 | 13 % KITCHEN/CLEANING
 | 5 % OUTDOOR

¹ EPCOR

MORE WATER CONSERVATION TIPS AT EPCOR

EPCOR provides great tips on how to reduce your water use and save money at: epcor.com/efficiency-conservation/Pages/efficiency-conservation.aspx
GREEN FACTS AND TIPS: WATER CONSERVATION

Toilets
Older-model toilets use 20 litres per flush. Replacing your existing toilet with a new low-flush toilet reduces water use between 30% (down from 13 litres to 4.8 litres) and 75% (down from 20 litres to 4.8 litres) per flush, depending on your existing unit.¹ Dual-flush toilets (3 and 6 litres per flush) are even more efficient.

Low-Flow Showerheads
Showering is one of the most significant water uses in our homes. Showers account for nearly 17% (50 litres per day) of the water used by an average family. Low-flow showerheads (under 7.6 litre per minute) are readily available for a cost comparable to traditional high-flow fixtures. Look for the WaterSense label when making a fixture purchase. For more information, visit: www3.epa.gov/watersense/products/showerheads.html

Bathroom Faucets And Aerators
Using a low-flow or WaterSense labeled faucet or aerator (under 5.7 litres per minute) can reduce the water use for a sink by 30% or more when compared to a standard fixture. Using an aerator means you can upgrade existing fixtures and achieve savings by only spending a few dollars. Saving water has double the benefits since you reduce the demand on your hot water heater as well. Not only will you save water, but you could save enough energy to run a hair dryer for 10 minutes every day for a year. For more information, visit: www3.epa.gov/watersense/products/bathroom_sink_faucets.html

Kitchen Fixtures and Appliances
As in the bathroom, low-flow faucets and accessories can be used in the kitchen to save water and energy. If your dishwasher was produced before 1994, it is most likely using an extra 38 litres of water per cycle, which translates to extra money on your utility bill for heating the water. Wouldn’t you rather spend the money on something else? For more information, visit: energystar.gov/products/appliances/dishwashers

¹ edmonton.ca/city_government/documents/PDF/Water.pdf
Kitchen Garburator
Try to avoid using a kitchen garburator, since it consumes energy and water every time you flip the switch. Putting food waste down the sink increases the load on city sewage systems and treatment plants. When you put your waste in the garbage, it makes its way to Edmonton’s waste management facility, where food scraps are properly managed at the compost facility. Better still, you could build or buy a backyard composter to deal with your food waste.

Washing Machines
ENERGY STAR certified clothes washers use about 25% less energy and 45% less water than regular washers.¹ These washers extract more water from clothes during the spin cycle, reducing drying time, which saves energy and wear and tear on your clothes. Save even more energy and water by running your washing machine only when it is full. Additional tips for a more efficient laundry room include washing in cold water, conducting routine maintenance on your machines, and using clotheslines and drying racks. See the High-Efficiency Appliances chapter for more details.

Leaks
Leaks account for approximately 14% of water use in the average household. That is a lot of water (and money) literally going down the drain! Fixing leaky toilets and taps can save up to 12,000 litres of water each month. To learn more about finding and fixing leaks visit: epcor.com/learn/efficiency-conservation/inside-your-home/bathroom

¹ energystar.gov/products/appliances/clothes_washers
Eco-landscaping Makes Sense
Eco-friendly landscaping offers a wide range of landscape design possibilities that can help your home look great while minimizing chemical fertilizers, reducing water consumption, and saving money.

Reducing Lawn and Garden Irrigation Reduces Costs
A cornerstone of eco-landscaping is reduced water use. This is because pumping water from its natural source, treating it so it’s safe to drink, and moving it to your tap uses a lot of energy. By reducing the amount of water you use to irrigate your lawn and gardens, you help lower the energy use and reduce greenhouse gas (GHG) emissions responsible for climate change.

Green Space Reduces Water Flow and Storm Sewer Demand
Eco-landscaping serves other sustainability objectives as well. Lawns and gardens provide green space and help increase infiltration and decrease the flow of water off your lot. This in turn reduces the demands on the storm sewer system as less water reaches the catch basins. This also decreases contaminants entering the North Saskatchewan River and can help to reduce the overall volume of water needing to be treated by the sewage treatment centre (in areas of the city that have combined sewer systems).

Enhance Your Property Value by Being Energy Wise
Eco-landscaping approaches to your home’s lawn and garden reduce energy use while improving the aesthetic and property value of your home.
Green Facts and Tips: Efficiency and Conservation

Lawns
Lawns only need 2.5 centimetres (1 inch) of water per week to stay nice and green. Keep track of how much water your lawn is getting by setting out an empty tin such as a tuna can to collect rainwater and irrigation. There’s no need to water your lawn after the water in the tin reaches a depth of 2.5 centimetres (1 inch). Learn more at: epcor.com/learn/efficiency-conservation/outside/Pages/lawn.aspx

Native Plants
Plants native to the Edmonton region are a gardener’s best friend because they thrive in our local climate. They’re relatively unaffected by drought, wind, extremes in temperature, and the unpredictable early and late frosts of our short prairie growing season. For more information on types of native plants suitable for landscaping, visit: epcor.com/learn/efficiency-conservation/outside/Pages/garden.aspx

Trees
A well-placed line of evergreens on the north and west side of your home provides shelter against winter winds and reduces your home’s demand for heat. Deciduous trees (trees that lose their leaves in the winter) on the south side of your house provide shade in the summer and sunshine during the winter.
Soil, Mulch, and Compost
Adequate soil depth and quality plays an important role in storing and retaining water and nutrients for vigorous growth. Provide a minimum of 15 centimetres (6 inches) for lawn areas and 30 to 45 centimetres (12 to 18 inches) for shrubs. Soil should be good quality, contain organic material such as compost, and drain well. A sandy loam that feels soft and crumbles easily is the optimum texture. Cover the soil surface around your outdoor plants with compost, shredded bark, or other organic material to help maintain moisture.¹

For further guidance on healthy lawns, please visit:
- edmonton.ca/residential_neighbourhoods/gardens_lawns_trees/tip-healthy-soil.aspx
- healthycanadians.gc.ca/healthy-living-vie-saine/environment-environnement/home-maison/lawn_healthy-saine_pelouse-eng.php

Efficient Irrigation
More than half of the water applied to lawns can be lost to evaporation and runoff due to overwatering. If you’re looking at a home that has an irrigation system, check to see if it uses drip or low-volume nozzles wherever possible, as these reduce water flow rates. Automatic shut-off devices or irrigation timers and controllers can further optimize irrigation and reduce wastage.

Rainwater Collection
A cistern or rain barrel to capture and store rainwater for irrigation reduces runoff and the greenhouse gas (GHG) emissions associated with tap water. The water can be used to irrigate the garden (instead of using tap water, saving you money by reducing your water bill) and is healthier for the plants.

Rain Gardens
Rain gardens are stormwater management landscaping features to look for. They’re characterized by a vegetated, shallow depression with permeable topsoil. Rain gardens provide water quality treatment, reduce runoff and allow for infiltration near where runoff originates, such as roofs, driveways and sidewalks. Learn more at: edmonton.ca/RainGarden

More Information on Conservation and Landscaping
EPCOR provides great efficiency and conservation tips for outside your home: epcore.com/learn/efficiency-conservation/outside/Pages/default.aspx

Also, see the City of Edmonton’s Low Impact Development – Best Management Practices Design Guide PDF for ideas on landscaping features such as rain gardens, bioswales, permeable pavement, and box planters: edmonton.ca/LID

¹ Lawn Ecology brochure, Health Canada, 2002
Healthy Indoor Spaces are Important for Edmontonians
Edmontonians spend a great deal of time indoors, particularly in winter, so it’s important to make our indoor spaces as healthy as possible.

Smart Product Choices Reduce Environmental Impacts
Using local, recycled, and non-toxic products and materials can reduce environmental impacts of transportation, material harvesting and processing, and toxic environmental emissions. That’s better for the environment and better for you.

What Makes a Home Healthy? Here’s What to Look for:
» When looking at a home on the resale market, be aware that depending on the age of the home, some potentially toxic compounds may have been used in its construction like lead paint, asbestos, and urea formaldehyde foam insulation. It can be difficult to identify the presence of these substances without hiring an expert. If it’s known by the seller, it must be disclosed at the time of sale.

» For new homes, look for low-VOC paints, adhesives, and flooring (Green Seal®, Green Label®, or equivalent labels). Also look for rapidly renewable or recycled materials like bamboo flooring or recycled glass tile. Ask if the wood (including bamboo) is certified by the Forest Stewardship Council® (FSC), which means it comes from sustainably managed forests.

» A healthier home uses low-VOC paints, glues, and flooring materials, with ecolabels such as Green Seal or Green Label for flooring. It’s important to note that VOCs are in many things, and the products brought into the home after you move in can also contribute to indoor air-quality issues.

» A healthy home has a heat recovery ventilator which delivers filtered fresh air into bedrooms and living rooms while removing contaminated air from the bathrooms and kitchen. To learn more, please refer to the heat recovery ventilator (HRV) details listed in the Ventilation Information chapter.

» Look for healthy amounts of natural lighting in all areas that are regularly occupied.
Make Healthy Product and Material Choices for Your Home
A healthy home is free of toxins, provides plenty of fresh air, and lets lots of daylight in. Healthier product and material choices can reduce the toxins that potentially accumulate in your indoor environment, cut down on odours, and provide a more pleasant living space that can enhance the value of your home.

GREEN FACTS AND TIPS: CREATING A HEALTHIER HOME

Environmental Product Declarations
The manufacturing industry has been going through a revolution; it is much easier now to purchase environmentally friendly building materials that are of high quality at comparable prices. Many factors determine if a product is ‘green’ – so make sure to read up on what the product you are purchasing is made of. Contact the manufacturer if needed, but also look out for ‘Environmental Product Declarations’ (EPDs) that confirm if a product is ‘green’. EPDs cover a range of green attributes from sustainable manufacturing processes, products made from materials that re-grow quickly, waste materials recycled into new products, products that can be recycled at the end of their useful life, and products that do not contain or release toxic chemicals. You will probably not find one product with all green attributes, but you can select a product with at least one green attribute that is important to you.

Also consider repurposing building materials from local material reuse suppliers such as the Habitat for Humanity Restore (hfh.org/restore/home).

Non-Toxic Products
The easiest way to keep indoor air quality toxin-free is to avoid bringing toxins into the home in the first place. Be aware that many types of carpets, paints, solvents, glues, and other building materials used in the home contain toxins such as volatile organic compounds (VOCs). Make sure the indoor building materials are low-VOC or no-VOC. Look for paint or adhesive products certified by Green Seal, GREENGUARD®, or Master Painters Institute® (MPI). For carpets, look for the Carpet and Rug Institute’s Green Label or equivalents.

Dust Control
Dust and vacuum often. Household dust is now recognized as one of the most significant sources of childhood exposure to toxic substances. Household dust often contains toxins from both indoor and outdoor sources. These toxins pose a substantial health risk to adults, children, and pets as they have been linked to cancer, adverse effects on children’s brain development, and immune and reproductive problems. One source of indoor toxins include
flame retardants found in furniture, carpets, and electronics. When buying new furniture, mattresses, and pillows look for options that do not have flame retardants. When using or buying a vacuum, make sure it has a HEPA filter system so that you are not allowing the dust back into the air.

Ventilation Systems

Think of your furnace as the lungs of your house; having a clean heating system with a clean filter is a good way to enhance the air quality of your home while also ensuring your furnace lasts longer. If you are finding your home to be dusty, it might be time to change your filter or have your ductwork professionally cleaned. The main purpose of a furnace filter is not to actually clean your air; it is to protect the furnace by collecting the dust, hair, and allergens that enter through the return ducts usually located on the floors of your house. A clean filter helps make sure your furnace lasts longer because it isn’t trying to move air through a blocked filter, while also removing larger contaminants. However, it does not remove smaller toxins like formaldehyde, most volatile organic compounds, and radon. Many older homes do not have a ventilation system with a fresh air supply to refresh the indoor air; oftentimes it just recirculates the air in the home. A newer home may have a fresh air intake with a heat recovery ventilation (HRV) system, which often includes filtration to remove contaminants before they enter your home.

Daylight and Views

Homes with abundant daylight create pleasant indoor environments and can contribute to the well-being of occupants. However, making sure that the home doesn’t lose too much heat in winter may require using triple-paned glass or other strategies.

Local Manufacturers

Using building materials and products made in or near Edmonton supports the local economy and reduces the amount of energy used and greenhouse gases emitted in shipping.

Durable Materials

Choosing durable building materials can add up to savings in the long run. Getting longer use out of building materials is good for the environment too.
Radon Testing
Radon is an odourless radioactive gas that occurs naturally in the environment. Naturally occurring radon arises from the breakdown of uranium, which is a common trace element in some natural geologic materials such as granite, shale, or phosphate minerals. Radon has been connected to serious health issues and is the second leading cause of lung cancer in Canada, with 1,900 Canadians dying each year due to exposure to high levels of radon.\(^1\) Concentration levels vary from one house to another, even if they’re similar and next door to each other. Testing for radon is simple and you can buy inexpensive radon test kits from a number of local retailers. The good news is Alberta has adopted requirements to require radon proofing in new homes and many good contractors are now able to install active radon mitigation systems in existing homes.\(^2\) To learn more about radon, visit: hc-sc.gc.ca/ewh-semt/radiation/radon/faq_fq-eng.php

Eco-Labels
A number of organizations offer product certification programs. When choosing products or materials, always look for eco-labels such as Forest Stewardship Council (FSC) certified lumber and Green Seal paints. To learn more about these labels, visit: edmonton.ca/business_economy/documents/PDF/EnviroLogos.pdf

Solar Energy Makes Environmental Sense
Solar energy works in any climate and the fuel – sunshine – is free! Solar energy is sustainable and it doesn’t produce greenhouse gas emissions.

Passive Solar Design
A house can have passive solar design features to reduce energy consumption. In this case, a house needs to have good solar access and orientation (for example, facing southeast to southwest) with no blockage of sunlight.

Passive solar design generally involves optimal sizing and orientation of high-quality windows, careful selection of building materials that retain heat, and proper building orientation and solar access.

By integrating passive solar design into the design of a new building, energy use can be reduced by over 50%. This design strategy requires careful integration and optimization of passive solar elements within the home’s design. It’s therefore best suited to new homes and is more challenging to achieve by retrofitting.

Clean Energy with a Low Carbon Footprint: Solar Photovoltaic (PV) Systems
Installing renewable energy systems helps reduce Edmonton’s reliance on electricity generated from coal. Solar energy systems generate clean energy with a very low carbon footprint, which contributes to Edmonton’s climate change mitigation goals. Micro-generation (the generation of small amounts of power at the household or building level) makes Edmonton’s energy system more resilient as it increases redundancy and diversity of energy sources. Promoting and encouraging solar can also help create green jobs in Edmonton and diversify the economy.

Go Solar: Here’s What to Look for

Solar panels can be installed on new or existing homes, although it’s easier and cheaper to install them on new homes. In either case, consider what type of system you want: water heating or photovoltaic (electricity-producing). Work with a qualified system designer to select the appropriate technology and system size for your home. CanSIA (Canadian Solar Industries Association) provides guidance on selecting qualified solar energy service providers.

The most cost-effective option is to make sure the house is as energy-efficient as possible before adding solar. You should find out if energy efficiency improvements have been made to the home in combination with the solar installation.

If you’re buying a newer home, request that the builder make it ‘solar-ready’. Making a new or existing home solar-ready is a fairly simple process that does not cost a lot. All you need is to run an empty pipe (for future wiring) from your utility room to the roof, and ensure there is enough space in the utility room for future equipment and dedicated roof space for the future panels that is preferably orientated to maximize sun exposure. Even if you decide you won’t install solar right away, at least your home will be set up for it.

Solar Home System

* The DC Disconnect Switch allows for the system to be shut down for maintenance or in the event of a house fire
** The Net Meter measures power coming from the grid and power that the house is exporting to the grid
*** The PV Generation Meter keeps track of how much power the PC system is generating
Shed New Light on Price Fluctuations

Using solar energy means you'll be less affected by fluctuations and long-term increases in the price of conventional energy such as natural gas and conventional electricity. Solar photovoltaic electricity panels can potentially supply anywhere from a few per cent up to 100% of your electricity needs; and as mentioned earlier, passive solar design can reduce heating energy demand by over 50%. Passive solar design can reduce heating energy demand by 25% or more in a well-designed, high-performance passive solar home.

Find Out More from the Solar Energy Society of Alberta

The Solar Energy Society of Alberta provides technical information, examples of installed systems, and details on solar energy providers at: solaralberta.ca

GREEN FACTS AND TIPS: SOLAR ENERGY

Sunny Edmonton Makes Perfect Solar Sense

Edmonton’s winter climate is well-suited to solar energy. With 2,300 hours of sun in an average year, Edmonton is one of the sunniest cities in Canada. When systems are properly designed and sized to accommodate the climate, snow and ice don’t have a major impact on solar energy production.

Solar energy systems can theoretically supply all the energy needs of a home although they're often sized to supply a portion of the energy demand based on affordability or the practicality for a given home. These systems can also contribute to a net-zero energy home (a home that uses zero net external energy on an annual basis).

Solar Water Heaters

Solar water heaters use the sun to heat the water you use in your home for washing. Most solar water heaters require a well-insulated storage tank, almost all need a back-up or booster system, such as a tankless water heater, and all require a detailed piping manifold.

As solar photovoltaic electricity becomes more and more cost effective, many people are choosing solar electric systems that are connected to an electric hot water heater. In this way, the extra electricity generated by the sun can be sent to the grid, whereas not all the thermal energy generated can be stored in a water tank.
Photovoltaic (PV) Panels

Photovoltaic (PV) panels are used to produce electricity as an alternative to getting all the power from the electrical utility grid. The capital costs for these systems have been dropping rapidly in the last several years. Additional information can be found at: nrcan.gc.ca/energy/efficiency/housing/research/5141

Grid-Connected Solar Energy Systems

Presently the vast majority of solar installations in Alberta are connected to the electricity grid. This means that when it is sunny, your solar energy system is over-producing and providing electricity to the grid, and when the sun is not out, your home uses electricity from the grid.

Until battery technology improves, the grid is the best and least costly solution for storing electricity. This is regulated under the Micro-Generation Regulation. More information can be found at: www.auc.ab.ca/involving-albertans/micro-generation

Also, check out the application procedure and required permits: edmonton.ca/SolarPermits

Off-Grid PV Systems

Off-grid PV systems operate independently of the electrical utility grid but require battery storage. Designing, permitting, and installing an off-grid system can be very challenging. Also, sizing the system to meet the needs of a typical Edmonton family may not be economical without pursuing energy-demand strategies.

Grants and Incentives

The City of Edmonton as well as other organizations offer incentives to improve the energy efficiency of your home and to add renewable systems such as solar to your home. Please visit the City website for more information: edmonton.ca/GreenFinancialIncentives
There are many other emerging technologies that have potential green benefits but are not yet commonplace:

Rainwater Collection & Reuse

Collecting rainwater from the roof of your home is a simple concept but it can be complicated because you need to treat the water before it can be re-used for certain purposes. This water can be re-used in the home to flush toilets, water your lawn, and wash your car.

The amount of water that you can collect is dependent on the square footage of your roof, the typical amount of rainfall in your area, and how much water you can store and treat. Typically 80% of rainfall is the maximum proportion of water that you can capture from your roof as some will be lost due to absorption, leaks, overruns, etc.

To learn more about how to design and install your own system, read CMHC’s “Collecting and Using Rainwater at Home – A Guide for Homeowners” (https://www.cmhc-schl.gc.ca/en/co/grho/grho_016.cfm), and be sure to follow Government of Alberta legislation (municipalaffairs.alberta.ca/CP_RainwaterHarvesting).

What about grey water? Grey water is a term referring to wastewater from baths, sinks, washing machines, and other kitchen appliances. Grey water reuse is different than rainwater reuse, and grey water reuse in Alberta is currently not legal. To learn more about this water reuse system and why it is not legal, visit this site: municipalaffairs.alberta.ca/1176

Deep Green Rating Systems

Some rating systems are considered ‘light’ green and other rating systems are considered ‘deep’ green and are relatively more challenging to accomplish but offer significantly greater sustainability benefits. Green rating systems that fall into the deep green category are: Living Building Challenge™, Passivhaus™, and Net Zero Energy™. These three certification systems are the most difficult to achieve, but have the largest returns – think of having no utility bills at all! To learn more about these, visit the chapter Green Rating Systems.

1. cmhc-schl.gc.ca/en/co/grho/grho_016.cfm
Red List Materials
Chemicals found in various building materials have been connected to human health issues and toxicity concerns. Building professionals and scientists are constantly working to find healthier alternatives and design professionals are encouraged to use products that do not contain harmful chemicals and compounds. A term for these chemicals is “Red List”. For those who are chemically sensitive, or just interested in making your home toxin free, you can learn more about these Red List chemicals at: living-future.org/redlist

The Red List is considered a deep green initiative because sourcing alternatives can be difficult, time consuming, and potentially costly. A less time consuming alternative is to write letters to manufacturers that use Red List chemicals advocating for them to find alternatives. The Living Building Challenge has examples of such letters.

Geoexchange, Geothermal, or Ground-Source Heat Pumps
Geothermal heating and cooling systems use buried pipes to take advantage of the stable earth temperature below the frost line. These systems extract or reject heat as needed using a heat pump (similar to an air conditioner or refrigerator). Geothermal systems don’t create heat (like a furnace does) but rather, they move heat and as a result, the efficiencies are much higher and can reduce heating and cooling consumption by 70 to 80% compared with traditional systems.

Even with a relatively carbon intensive electricity grid, these systems provide carbon dioxide (CO2) emissions reduction, and when paired with green power, can eliminate carbon emissions entirely. While the initial cost can be high for a single family home, the energy reduction is greater than with almost any other technology.

Wind Energy
While large-scale wind energy generation sites are growing, small systems for homes tend to have relatively high costs compared to other options. It’s also worth noting that the winds that Edmonton experiences are often intermittent and too variable in speed to generate significant quantities of electricity. As a result, it can be challenging to design a system to generate dependable power at the household level.

Combined Heat and Power (CHP) or Cogeneration
A combined heat and power plant uses a fuel fired engine to generate power while simultaneously capturing the excess heat produced for heating purposes. Using the waste heat and creating electricity on-site makes the system more efficient than a traditional one fuelled by carbon intensive electricity. These systems can require a lot of maintenance and are best suited for buildings which have a constant need for
heat so that the excess heat is not wasted. Furthermore, depending on the carbon emissions factor of your electricity grid, these systems can actually increase the carbon footprint, especially over time, as the electricity grid gets cleaner. Learn more at: cogeneurope.eu/what-is-cogeneration_19.html

District Energy
A district energy system is one that centralizes heating and cooling energy generation and distributes this energy to a larger area including many buildings, such as a neighbourhood. District energy systems have traditionally used high temperature boiler plants that distribute high temperature water through insulated steel piping; this heat is then used directly at each building.

More recently, lower temperature systems are being used which allow much easier tie-in of renewable energy generation and eliminate the need for boiler plants. An example is ambient temperature district energy systems which extract low grade heat from sewers or geoxchange systems and deliver ambient temperature water to each building which can be used for heating or cooling. These systems are much more efficient and can share energy on a district scale.

When purchasing a new home, investigate whether it is connected to a district energy source!
Electric Vehicle Charging Stations

As electric vehicles become more common, home builders and owners may choose to install vehicle charging stations in garages or other appropriate locations. These stations need to be included in the design of the home’s electrical system. As with ground-source heat pumps, unless the electricity used to power the electric vehicles comes from a green source, electric vehicles will still result in carbon emissions.

Electric bicycles, however, are a great option because they use so little energy compared to a car. Electric bicycles also provide moderate physical exercise (if they’re the pedal-assist type). And during some urban commutes, the rider can reach their destination quicker than by car.
Annual Fuel Utilization Efficiency (AFUE):
AFUE is measurement of the thermal efficiency of combustion equipment such as hot water heaters, furnaces, and boilers. A higher AFUE means a higher efficiency.

Biomass:
Vegetation, sewage, or agricultural waste used as a fuel or energy source.

Blower Door Test:
A test that measures airtightness in homes and small buildings. It can also be used to find the location of major air leaks. The equipment for the test includes: 1) a temporary door covering installed in an outside doorway; 2) a fan that forces air into or out of the building; 3) a pressure measurement instrument called a manometer to measure the pressure difference across the fan and the building envelope.

BUILT GREEN:
Built Green Canada® is a national, industry-driven organization committed to working with builders interested in responsible sustainability practices in the residential building sector. A BUILT GREEN® certified house includes a two-in-one label with both an EnerGuide label and the BUILT GREEN seal. The homes must be built by BUILT GREEN qualified builders.

Carbon Footprint:
The amount of carbon dioxide and other greenhouse gases emitted into the atmosphere from human activities such as the consumption of fossil fuels. In buildings, carbon is typically emitted from heating, cooling, electricity use (if the electricity is generated by fossil fuels), and hot water use.

Certified Energy Advisor (CEA):
A Certified Energy Advisor is an individual who has been trained and is recognized by Natural Resources Canada to conduct EnerGuide energy models for homes as well as air leakage (blower door) tests.
Climate Change Mitigation:
Actions taken to reduce greenhouse gas emissions. Reducing greenhouse gas emissions is expected to slow global temperature increases.

Cogeneration:
A combined heat and power plant uses an engine to generate power while simultaneously using the waste heat for heating purposes. Using the waste heat and creating electricity on-site makes the system more efficient than a traditional boiler paired with grid electricity. The systems are best suited for buildings that have a constant need for heat (otherwise the heat is wasted). Typically this application works better in larger commercial, institutional, or mixed use buildings than single family homes.

Condominium:
A multi-family building in which the suites in the building are individually owned and the owners pay a monthly fee to cover the operating costs of the building.

District Energy:
A district energy system centralizes heating and cooling energy generation and distributes this energy to an entire neighbourhood. District energy systems have traditionally used high temperature boiler plants that distribute high temperature water through insulated steel piping; this heat is then used directly at each building. More recently, lower temperature systems are being used which allow much easier tie-in of renewables and eliminate the need for boiler plants. A district energy system is installed on a community scale and not by single family home.

Drain Water Heat Recovery:
The use of a heat exchanger to recover energy and reuse drain water heat from various activities such as dishwashing, clothes washing, and especially showers. The technology reduces energy consumption for water heating and is also known as water heat recycling, drain-line heat exchange, or grey-water heat recovery.

Ecological Footprint:
A measure of the amount of biologically productive land necessary to supply the resources a human population consumes and to absorb the associated waste.
EnerGuide:
The official Government of Canada mark associated with the labeling and rating of the energy consumption or energy efficiency of specific products. EnerGuide™ labeling exists for appliances, heating and cooling equipment, houses, and vehicles.

Energy Rating (ER) for Windows:
The energy rating (ER) value is calculated using a formula that balances a product’s U-value with its potential solar heat gain coefficient (SHGC) and its airtightness. The higher the number, the more energy-efficient the product. ER values normally range from 0 to 50.

ENERGY STAR:
The international symbol of premium energy efficiency. Products that display the ENERGY STAR® symbol have been tested according to prescribed procedures and have been found to meet or exceed higher energy efficiency levels without compromising performance.

Environmental Product Declaration (EPD):
In life cycle assessment, an EPD is a standardized way of quantifying the environmental impact of a product or system. EPDs are independently verified and communicate transparent information about the life-cycle environmental impact of products. Having an EPD for a product does not imply that the declared product is environmentally superior to alternatives; rather, it is simply a transparent declaration of the life-cycle environmental impact.

Geoexchange:
Low-temperature earth energy commonly used for heating and cooling a building with a heat pump. The stable temperature of the earth just below the surface can be used as a heat source or sink to generate free earth-energy for a building.

Geothermal Energy:
Energy derived from the heat in the interior of the earth.

Greenhouse Effect:
The earth’s atmosphere acts somewhat like the glass of a greenhouse. Some incoming radiation from the sun is reflected directly back to space by the earth’s atmosphere and surface and some is absorbed by the atmosphere. The rest of the incoming radiation is absorbed by the earth’s oceans and land, where it’s converted into heat, warming the surface of the earth and the air above it. Particular gases in the
atmosphere act like the glass of a greenhouse, preventing the heat from escaping. Without this natural greenhouse effect, the earth would be much colder – about 33°C colder – making the average temperature on the planet a freezing -18°C rather than the 15°C it is now.

Greenhouse Gases (GHGs):
Any of the gases whose absorption of solar radiation is responsible for the greenhouse effect, including carbon dioxide, methane, ozone, and the fluorocarbons.

Ground-Source Heat Pump (GSHP):
A central heating and/or cooling system that pumps heat to or from the ground. It uses the earth as a heat source in the winter, or a heat sink in the summer. This design takes advantage of the moderate temperatures in the ground to boost efficiency and reduce the operational costs of heating and cooling systems. Also known as a geoexchange system.

Heat Pump:
A heat pump is a mechanical system that extracts heat out of a cold space into a warmer one, such as out of the air or the ground and into a home. Heat pumps can also be used for cooling and typical examples of this are air conditioning units and refrigerators. The relative energy and cost savings for installing a heat pump depend on your heating system and the current cost of energy. By running a heat pump you will use less natural gas, but you will use more electricity to run the pump.

Heat Recovery Ventilator (HRV):
A fully ducted system that delivers fresh-filtered outside air into the house, while moving stale air out. As the fresh air passes the stale air (in separate chambers), the heat from the hot stale air is passed to the cool fresh air, pre-warming it before it is heated. This action reduces the amount of energy it takes to heat the home.

Hydronic Heating:
A heating system that transfers heat by circulating a fluid through a closed system of pipes.
Leadership in Energy and Environmental Design (LEED):
A third-party certification program and an internationally accepted benchmark for the design, construction, and operation of high-performance green buildings, homes, and neighborhoods. The program is administered in Canada by the Canada Green Building Council (CaGBC).

LEED Canada for Homes:
Leadership in Energy and Environmental Design® (LEED) has several programs for certifying buildings based on building type. LEED Canada for Homes certifies single-family homes, townhomes, and even low-rise multi-family houses up to 3 levels high. Certification requires on-site inspection and third party verification meaning certifications are based on what is actually constructed.

Living Building Challenge (LBC):
LBC™ is one of the most difficult programs to gain certification under as it has the most stringent requirements, including requirements to achieve net zero energy and water. LBC has seven performance categories, or “Petals”, which are further divided into twenty “Imperatives” that can be applied to almost any building type, scale, or location. The overarching Petals include: Place, Water, Energy, Health and Happiness, Materials, Equity, and Beauty.

Location Efficiency:
A term that describes how easily you can access work, shopping, entertainment, parks, and other amenities from your home, either by walking or through the use of transit. If the location of your home results in easier walks, shorter car trips, and faster access to transit, it’s generally considered a more efficient location.

Low-Emissivity (Low-E) Coating:
The coating put on glass to reduce its thermal (heat) emissivity (loss). Low-E-coated windows can provide greater thermal efficiency (insulation properties) than regular windows.

Multi-Family Building:
Under the EnerGuide program, a multi-family building is defined as any building that has 4 or more levels or storeys, and where 50% or more of the floor area is residential.
Native Plants:
Native plants are species indigenous to a certain geographical area, meaning they thrive in that climate. Native plants are relatively unaffected by drought, wind, and extremes in temperature, and are particularly helpful for Edmonton’s short prairie growing season.

Net-Zero Home:
A home that produces at least as much energy on-site from a renewable source as it uses on an annual basis.

On-Demand Hot Water Heater:
On-demand or tankless hot water heaters can be between 19% and 53% more energy-efficient than conventional storage-tank water heaters however they typically cost more to install. The greatest potential improvements are in homes that use the least hot water; typical hot water heaters continually use energy to heat water all day long even when not being used.

Passive Design:
Passive design is key to green building design. It’s an approach that maximizes the use of free, renewable sources of energy such as sun and wind to provide household heating, cooling, ventilation, and lighting. This reduces or removes the need for mechanical heating or cooling. Using passive design can reduce temperature changes, improve indoor air quality, and make a home drier and more enjoyable to live in. (Passive design is also called passive solar design.)

Photovoltaic (PV) Panels:
Specially designed panels that convert solar energy into electricity as an alternative to getting power from the electrical utility grid. Also called solar panels.

R-2000:
Operated by the Natural Resources Canada (NRCan) Office of Energy Efficiency, R-2000 is a voluntary standard for new homes which demands a high level of energy efficiency, typically beyond what building codes require.
Radon:
Radon is an odourless radioactive gas that occurs naturally in the environment and can accumulate within homes. It arises from the breakdown of uranium, which is a common trace element in some natural geologic materials such as granite, shale, or phosphate minerals. Radon has been connected to serious health issues and is the second leading cause of lung cancer in Canada, with 1,900 Canadians dying each year due to exposure to high levels of radon. Radon is present across Canada.

Red List:
Red list chemicals are the chemicals and compounds that are known to have the worst health effects. These chemicals can be found in all products including various building materials. Look for products that do not contain these worst-in-class chemicals and compounds.

RSI:
R-value, which stands for “resistance value,” provides a means for quantifying the thermal resistance of an insulating material. If the the R-value is high, the material is a good thermal insulator and heat will not easily flow through it. If the R-value is low, the material is a poor insulator. RSI stands for “R-value Système International,” meaning it measures the same quantity but uses the international metric system of units. Converting one to the other requires some simple math: \[\text{R-value (US)} = \text{RSI multiplied by 5.678263337} \] or \[\text{RSI (SI)} = \text{R-value multiplied by 0.1761101838} \]

R-Value (Insulation):
A measure of thermal resistance used in the building and construction industry. Thermal resistance is a measure of a temperature difference by which an object or material resists a heat flow. Therefore, the higher the R-value, the more effectively the insulation resists the transfer of heat (that is, less heat escapes your home in the winter and less heat enters your home in the summer).

Single-Family Home:
Under the EnerGuide program, a single-family home includes the following building types: fully detached house, duplex, triplex, fourplex, row house, or low-rise multi-family building no more than three storeys high and in which over 50% of the floor area is residential.
Solar Gain:
The increase in temperature in a space, object, or structure that results from solar radiation. The amount of solar gain increases with the strength of the sun and with the ability of any intervening material to transmit or resist the solar rays. This concept is also referred to as solar heat gain or passive solar gain.

Solar Heat Gain Coefficient (SHGC):
The number to know when selecting windows, doors, and skylights. It’s a measure of how much of the sun’s heat is transmitted through those fixtures, expressed in a number from 0 to 1. A window that has a SHGC of 0.3 allows 30% of the sun’s heat to pass through. Whether you want a higher or lower number depends on your goal: a product with a low SHGC helps block heat and reduce cooling loads in hot weather; a product with a high SHGC is more effective at harnessing solar heat in cold weather.

U-Value:
The heat transfer coefficient that describes how well a building element conducts heat. It measures the rate of heat transfer through a building element over a given area under standardized conditions. The usual standard is at a temperature gradient of 24°C, at 50% humidity, with no wind. A smaller U-value is better at reducing heat transfer. A value of 0.33 is a good benchmark for a double-paned, argon-filled window.

Walk Score:
A large-scale, public access walkability index that assigns a numerical walkability score to any address in Canada. The final score gives you a general idea of how walkable your area is by analyzing how close common, everyday amenities like grocery stores, transit stops, shopping malls, etc. are to your home.

WaterSense:
WaterSense®, a partnership program developed by the U.S. Environmental Protection Agency, seeks to reduce water usage by offering people a simple way to use less water with water-efficient products, new homes, and services. Products and services that have earned the WaterSense label have been certified to be at least 20% more efficient without sacrificing performance.

Window-To-Wall Ratio:
The proportion of the building facade area that has glass compared to solid wall provides a benchmark of the thermal performance of the building envelope as a whole. Generally, the larger the window area, the more energy that’s required to heat the building.
THE GREEN HOME GUIDE CHECKLISTS
SINGLE–FAMILY HOME CHECKLIST

ADDED VALUE AND HIGH PERFORMANCE

This checklist can be filled out for your home and passed on to the new homeowner if you sell.

<table>
<thead>
<tr>
<th>QUESTIONS TO ASK</th>
<th>WHAT TO LOOK FOR</th>
<th>BENEFITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOCATION</td>
<td>RESALE</td>
<td>NEW</td>
</tr>
<tr>
<td>Is transit readily accessible or can I walk to work, school, and recreation activities?</td>
<td>Whether you’re buying a new or existing home, look for a house that’s within a 5 to 10-minute walk (400 to 800 metres) of a transit stop, a grocery store, a park, and other daily destinations. Visit: walkscore.com</td>
<td>This is a feature you cannot change. Your location is important in reducing your household energy costs and maximizing the convenience of your lifestyle.</td>
</tr>
<tr>
<td>HOME SIZE</td>
<td>RESALE</td>
<td>NEW</td>
</tr>
<tr>
<td>What is the square footage of the home?</td>
<td>A home that provides less than 46 sq. m (500 sq. ft.) per person is more resource efficient than a larger home. Reference: Energy Star for Homes (version 3) and Canada Green Building Council LEED Canada for Homes (version 4).</td>
<td>Choosing the right size of home can save you money on your heating and electricity bills every month.</td>
</tr>
<tr>
<td>ENERGUIDE RATING SYSTEM</td>
<td>RESALE</td>
<td>NEW</td>
</tr>
<tr>
<td>What is the EnerGuide rating of the home?</td>
<td>Look for a label that indicates that ‘this house’ uses less energy on an annual basis than ‘a typical house’.</td>
<td>EnerGuide for Houses is a measure of the home’s energy performance. Not all homes have a label but it’s easy to get and is extremely important for determining the energy efficiency of the home. Your energy bills can be among your greatest monthly expenses. Choosing an energy-efficient home reduces your energy costs.</td>
</tr>
</tbody>
</table>
QUESTIONS TO ASK

<table>
<thead>
<tr>
<th>BUILDING ENVELOPE</th>
<th>WHAT TO LOOK FOR RESALE</th>
<th>NEW</th>
<th>BENEFITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is the home air-tight?</td>
<td>Ask if a blower door test has been done. A reading of 2.5 ACH at 50 Pa is considered current good practice, whereas an R-2000 home will have a reading of 1.5 ACH at 50 Pa. A lower exchange rate signifies better airtightness.</td>
<td>Reducing the amount of air that leaks in and out of your home is an easy and cost-effective way to cut heating and cooling costs, improve durability, and increase comfort.</td>
<td>☑</td>
</tr>
<tr>
<td>Is the home well-insulated?</td>
<td>A qualified professional can test the level of a home’s insulation. Ask if the home has had an energy audit done. This report will indicate the levels of insulation in the home.</td>
<td>The Alberta Building Code specifies minimum insulation standards. But insulation levels that exceed the Building Code are recommended if you want to reduce your home’s energy consumption and costs. For example, insulation for a typical EnerGuide 80 house:</td>
<td>Your home’s insulation keeps the heat inside when it’s cold outside and keeps your home cool when it’s hot outside. Ensuring your home is well-insulated is a key to saving on your heating bills and staying comfortable. It also keeps the home quieter.</td>
</tr>
<tr>
<td>Are the windows ENERGY STAR-labeled and triple-paned?</td>
<td>Check to see that the windows are triple-paned.</td>
<td>If the window isn’t ENERGY STAR-rated, look for a window with a high energy rating (ER). As a guide, an ENERGY STAR-qualified window in Edmonton’s climatic region will have an energy rating (ER) of 29. The higher the ER, the more energy-efficient the window is.</td>
<td>Energy-efficient windows, doors, or skylights reduce household energy bills by an average of 12%. It also improves comfort near windows and keeps the home quieter.</td>
</tr>
<tr>
<td>Does the home have a heat recovery ventilator (HRV)?</td>
<td>An HRV system would likely only be installed in an existing home if it was already air-tight. If the home’s envelope has been upgraded, look for an HRV also being installed.</td>
<td>Although other methods of ventilation are available, if your home has a high EnerGuide rating of 80 or more, an HRV is considered the best solution to provide fresh air indoors while maintaining energy efficiency through heat recovery. An HRV provides numerous benefits, such as:</td>
<td>☑</td>
</tr>
</tbody>
</table>

Ventilation

- **Roof/Attic:** R-49, RSI 8.67
- **Walls:** R-17, RSI 2.97 to 3.08
- **Foundation walls:** R-17, RSI 2.98

Energy Audit

- An HRV system would likely only be installed in an existing home if it was already air-tight. If the home’s envelope has been upgraded, look for an HRV also being installed.

Energy Efficiency

- Reducing the amount of air that leaks in and out of your home is an easy and cost-effective way to cut heating and cooling costs, improve durability, and increase comfort.

Windows

- Energy-efficient windows, doors, or skylights reduce household energy bills by an average of 12%.
- It also improves comfort near windows and keeps the home quieter.

Insulation

- Ensuring your home is well-insulated is a key to saving on your heating bills and staying comfortable.
- It also keeps the home quieter.

Building Envelope

- A qualified professional can test the level of a home’s insulation. Ask if the home has had an energy audit done. This report will indicate the levels of insulation in the home.

- The Alberta Building Code specifies minimum insulation standards. But insulation levels that exceed the Building Code are recommended if you want to reduce your home’s energy consumption and costs.

Beneﬁts

- Energy-efficient windows, doors, or skylights reduce household energy bills by an average of 12%.
- It also improves comfort near windows and keeps the home quieter.

Reference

- energystar.gov/products/building_products/residential_windows_doors_and_skylights
HOME HEATING

<table>
<thead>
<tr>
<th>QUESTIONS TO ASK</th>
<th>WHAT TO LOOK FOR</th>
<th>BENEFITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is the home’s furnace ENERGY STAR-rated?</td>
<td>If your home’s furnace doesn’t come with an ENERGY STAR label, look for an EnerGuide annual fuel utilization efficiency (AFUE) rating of greater than or equal to 95% (high-efficiency furnace). In a resale home, even if the furnace has an ENERGY STAR label, ask when the furnace was replaced. Older ENERGY STAR furnaces would not meet the same standard of the ENERGY STAR furnaces of today.</td>
<td>The heating system is your home’s largest energy user, so making it more energy-efficient can make it one of the biggest cost savers.</td>
</tr>
</tbody>
</table>

HOT WATER HEATERS

<table>
<thead>
<tr>
<th>QUESTIONS TO ASK</th>
<th>WHAT TO LOOK FOR</th>
<th>BENEFITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is the home’s hot water tank ENERGY STAR-rated, and does it include tankless water heaters?</td>
<td>First, look to see if the home has 1 or more tankless water heaters. If the home has a central hot water tank, check to see if it’s an ENERGY STAR model. If not, the hot water heater should have a high energy factor (EF). The EF measures the efficiency of the water heater by comparing the energy supplied in heated water to the total daily energy consumption of the water heater. Look for an EF of 0.67 or higher. Check for a drain water heat recovery system.</td>
<td>The water heating system is the second-largest user of energy in the average home, so it’s another area for excellent savings.</td>
</tr>
</tbody>
</table>

GREEN RATING SYSTEMS

<table>
<thead>
<tr>
<th>QUESTIONS TO ASK</th>
<th>WHAT TO LOOK FOR</th>
<th>BENEFITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is the home certified by a recognized green building rating system?</td>
<td>Look for homes certified by any of these rating systems: » BuiltGreen » LEED Canada » Passive House » R-2000 » ENERGY STAR for Homes</td>
<td>A green building certification typically goes beyond energy efficiency, so it can be a useful way to ensure that the home has a wide range of green features.</td>
</tr>
<tr>
<td>QUESTIONS TO ASK</td>
<td>WHAT TO LOOK FOR</td>
<td>BENEFITS</td>
</tr>
<tr>
<td>-----------------</td>
<td>------------------</td>
<td>----------</td>
</tr>
<tr>
<td>HIGH-EFFICIENCY APPLIANCES</td>
<td>RESALE</td>
<td>NEW</td>
</tr>
<tr>
<td>Are the major appliances ENERGY STAR-rated?</td>
<td>Look for an ENERGY STAR-rated refrigerator, dishwasher, microwave, washer, and dryer. Stoves and ovens aren’t ENERGY STAR-rated. You can also compare EnerGuide labels, which, under federal law, all new electrical appliances in Canada must have. Look for condensing or heat pump dryers.</td>
<td>ENERGY STAR-rated appliances typically use 10 to 50% less energy. ENERGY STAR dishwashers and clothes washers also save water. A front-loading clothes washer uses 45% less water and 25% less energy. References: energystar.gov/ia/new_homes/features/appliances_062906.pdf and energystar.gov/products/appliances/clothes_washers</td>
</tr>
<tr>
<td>WATER CONSUMPTION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Does the home have low-flush toilets and low-flow showerheads and faucets?</td>
<td>Try to meet or exceed the City’s requirements for new homes and major renovations, shown in the column to right.</td>
<td>Simple, low-cost water conserving fixtures can reduce your water consumption and water bills significantly. They also lower your energy costs by reducing the amount of water that needs to be heated. By switching to energy-efficient and water-wise low-flow fixtures and appliances, the average Edmonton household could save over $300 a year.</td>
</tr>
<tr>
<td>LANDSCAPING AND OUTDOOR ENVIRONMENT</td>
<td>RESALE</td>
<td>NEW</td>
</tr>
<tr>
<td>Does the home’s garden and lawn area have low irrigation needs?</td>
<td>Look for native plants and not too much turfed lawn area.</td>
<td>Eco-landscaping not only reduces water use, but typically reduces fertilizer and pest-and-disease-control requirements. Also, how your lot is landscaped has an impact on water conservation and water quality in the North Saskatchewan River.</td>
</tr>
<tr>
<td>Are trees strategically placed on the lot?</td>
<td>Look for a well-placed line of evergreen trees on the north and west side of your home. Deciduous trees along the south side provide summer shade while still allowing winter sunshine.</td>
<td>Well-placed trees provide shelter against winter winds and summer sun, reducing your home’s demand for heating and cooling.</td>
</tr>
<tr>
<td>Does the home have an irrigation system?</td>
<td>Look for an existing rain barrel or an area that can easily accommodate a rain barrel. If an underground irrigation system is in place, look for drip or low-volume nozzles as these reduce water flow rates. Automatic shut-off devices or irrigation timers and controllers can further optimize irrigation and reduce wastage.</td>
<td>More than half of the water applied to lawns can be lost to evaporation and runoff due to overwatering.</td>
</tr>
<tr>
<td>QUESTIONS TO ASK</td>
<td>WHAT TO LOOK FOR RESALE</td>
<td>NEW</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Were sustainable materials used in the construction or renovation of the home?</td>
<td>A healthier new or existing home uses low-volatile organic compounds (VOC) paints, glues, and flooring materials, with eco-labels such as Green Seal or Green Label for flooring.</td>
<td>Edmontonians spend a great deal of time indoors (particularly in winter), so it’s important to make indoor spaces as healthy as possible.</td>
</tr>
<tr>
<td>Is there ample natural light?</td>
<td>Check to see that there’s plenty of natural light in all the regularly occupied rooms.</td>
<td>Homes with abundant daylight create pleasant indoor environments and can contribute to the well-being of home occupants over the long term. However, making sure that the home doesn’t lose too much heat in winter may require using triple-paned glass or other strategies.</td>
</tr>
<tr>
<td>Have recycled and locally sourced materials been used in the construction?</td>
<td>Depending on when the house was built, the seller may not know the amount of locally sourced or recycled materials used in the home construction. But it doesn’t hurt to ask.</td>
<td>Look for recycled and local content in building materials, especially those that make up a large percentage of the overall home materials, such as wood, concrete, and steel.</td>
</tr>
<tr>
<td>Does the home include passive design to reduce energy consumption?</td>
<td>It’s more challenging to retrofit existing homes for passive design.</td>
<td>Effective passive design can be achieved with careful integration of different design elements on sites with good solar access and potential to orient the home for better performance.</td>
</tr>
<tr>
<td>Does the unit face north or south?</td>
<td>Optimally, the longer axis of the building should have east-west orientation, within 15 degrees. Most of the window area should be on the south side, with a smaller amount of windows located on the north side.</td>
<td>Not all homes can have this orientation, so try to take the principles of solar orientation and passive solar and apply them (where possible) during your house hunt.</td>
</tr>
</tbody>
</table>
SOLAR ENERGY AND HEATING cont.

QUESTIONS TO ASK

<table>
<thead>
<tr>
<th>Does the home have solar panels? If not, is the home solar-ready?</th>
</tr>
</thead>
</table>

WHAT TO LOOK FOR

- **RESALE**
 - The home may have pre-installed solar panels, or the home may be solar-ready so that you can easily install solar panels later.
 - If panels are installed, find out how much of the home’s energy needs are met by the solar energy system.

- **NEW**
 - Solar energy systems can be sized to provide up to 100% of the energy needs, but older homes aren’t usually energy-efficient enough to make this economical. That doesn’t mean solar energy systems aren’t possible for older homes, just that it might make sense to invest in energy efficiency improvements in combination with solar.
 - A new home should be built to adapt to new technology. If solar panels don’t fit into your current budget plans, ask if the home is solar-ready. (This means conduit and other such provisions have already been added, which makes future installation much easier.)

BENEFITS

- Solar photovoltaic (PV) electricity generation reduces your exposure to future energy price increases and is a feasible, renewable energy option for Edmonton’s climate.

OTHER GREEN INNOVATIONS

QUESTIONS TO ASK

<table>
<thead>
<tr>
<th>Does the house have other green technology such as geoexchange, combined heat and power, or an electric vehicle charging station?</th>
</tr>
</thead>
</table>

WHAT TO LOOK FOR

- **RESALE**
 - These systems are emerging in the marketplace and it’s worth asking the builder or seller if the systems have been installed in the home.

- **NEW**
 - These technologies can provide increased efficiency and/or provide alternative energy/fuel sources.

QUESTIONS TO ASK

<table>
<thead>
<tr>
<th>WHAT TO LOOK FOR</th>
<th>RESALE</th>
<th>NEW</th>
<th>BENEFITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Does the home have solar panels? If not, is the home solar-ready?</td>
<td>The home may have pre-installed solar panels, or the home may be solar-ready so that you can easily install solar panels later. If panels are installed, find out how much of the home’s energy needs are met by the solar energy system.</td>
<td>Solar energy systems can be sized to provide up to 100% of the energy needs, but older homes aren’t usually energy-efficient enough to make this economical. That doesn’t mean solar energy systems aren’t possible for older homes, just that it might make sense to invest in energy efficiency improvements in combination with solar.</td>
<td>Solar photovoltaic (PV) electricity generation reduces your exposure to future energy price increases and is a feasible, renewable energy option for Edmonton’s climate.</td>
</tr>
<tr>
<td>Does the house have other green technology such as geoexchange, combined heat and power, or an electric vehicle charging station?</td>
<td>These systems are emerging in the marketplace and it’s worth asking the builder or seller if the systems have been installed in the home.</td>
<td>These technologies can provide increased efficiency and/or provide alternative energy/fuel sources.</td>
<td></td>
</tr>
</tbody>
</table>
CONDO CHECKLIST

If you're looking for a new condo, you'll want to ask many of the questions covered in the Single-Family Home Checklist section, especially those related to location, green rating systems, energy efficiency, and water efficiency. However, condominiums also include additional common areas and unique amenities and you need to know how green they are. Even if the condo you buy doesn’t have all of these things, you could work with the condo board to see if some of them can be implemented. Here are some additional questions that pertain to multi-family condominiums:

QUESTIONS TO ASK

<table>
<thead>
<tr>
<th>WHAT TO LOOK FOR</th>
<th>BENEFITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN EACH UNIT</td>
<td></td>
</tr>
<tr>
<td>How is heat supplied to the unit?</td>
<td>Space heating is the single largest consumer of energy in a building. Hydronic heating is considered one of the most efficient ways of heating multi-unit residential buildings. However, if the condominium unit comes with a forced-air furnace, look for tips in the Single-Family Home Checklist section.</td>
</tr>
<tr>
<td>Look for hydronic heat (hot water radiators or in-floor radiant heating) instead of electric baseboard heaters. Ask how efficient the boiler is and about its service record. An energy-efficient boiler has an annual fuel utilization efficiency (AFUE) of 90% or more. It’s also important to see a history of utility bills for the building. If heating costs have changed over time, it’s important to know why.</td>
<td></td>
</tr>
<tr>
<td>How will you be charged for electricity, gas, and water?</td>
<td>Individual unit meters help save money, water, and energy as you’ll pay less if you use less.</td>
</tr>
<tr>
<td>Find out if each of the units has its own electricity and water meter. Very few buildings have individual meters for gas heating at this time but it can save you money if the building has them.</td>
<td></td>
</tr>
<tr>
<td>If there's a gas fireplace in the unit or in the common area, does it have electronic ignition and is it on a timer?</td>
<td>Gas fireplaces consume a significant amount of natural gas and are easy to leave on by accident. Also, the pilot lights on older fireplace models consume gas. They're often tricky to light and tend to be left on throughout the summer months.</td>
</tr>
<tr>
<td>Make sure that any gas fireplaces can turn off automatically. New gas fireplaces with electronic ignition save gas associated with keeping a pilot light on.</td>
<td></td>
</tr>
</tbody>
</table>
QUESTIONS TO ASK

<table>
<thead>
<tr>
<th>WHAT TO LOOK FOR</th>
<th>BENEFITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is the window-to-wall ratio optimized?</td>
<td>Look for units that provide a good amount of daylight but minimize windows (for example, glazing). As a rule of thumb, if the proportion of window-to-wall area is more than 50%, then the building has too much window and not enough insulated wall area.</td>
</tr>
<tr>
<td>Are there low-energy lights and automatic timer controls in the common areas?</td>
<td>Look for light emitting diode (LED) and compact fluorescent light (CFL) bulbs in the hallways, front entrance, exterior lighting locations, and parking area. Also look for lighting controls that are motion-activated or on timers/photocells.</td>
</tr>
<tr>
<td>Are the hot water recirculation tanks in the building on a timer?</td>
<td>Ask if timers are used to reduce the hot water temperature during early morning hours, when there’s almost no demand for hot water.</td>
</tr>
<tr>
<td>Is there drain water heat recovery?</td>
<td>In larger (and mostly newer) condominium buildings, it’s cost-effective to capture and recirculate the heat in waste water from showers, kitchens, etc. Find out if the building has been fitted with heat recovery coils around drain pipes.</td>
</tr>
<tr>
<td>Does the building have any renewable energy equipment?</td>
<td>Ask if any solar hot water or photovoltaic (PV) systems have been installed in the building.</td>
</tr>
<tr>
<td>Are there accessible and secure bike facilities?</td>
<td>Look for bike racks that are easily accessible, secure, and large enough to accommodate all those who would use them.</td>
</tr>
</tbody>
</table>
Questions to Ask

<table>
<thead>
<tr>
<th>What to Look For</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Are electric bikes welcome in the building?</td>
<td>Look for designated areas in the building for secure storage of electric bicycles and scooters, preferably with access to a few electrical outlets for recharging.</td>
</tr>
<tr>
<td>What energy-saving and health-oriented initiatives are being pursued by the condominium board?</td>
<td>When reviewing condo documents, look for evidence that the condo board is making energy-saving improvements such as maintaining or adding controls on the air exchanger, changing boiler filters regularly, sealing air leaks, insulating pipes, using non-toxic paints and adhesives, buying eco-friendly cleaners, etc. Also ask if the condo board is purchasing any green power.</td>
</tr>
<tr>
<td>Are green landscaping techniques being used?</td>
<td>Ask if the plants outside the building are watered on a water-saving drip irrigation system with timers, and whether the plants are fed with organic nutrients instead of chemical fertilizers and pesticides.</td>
</tr>
<tr>
<td>Does the building have a good system for waste recycling and composting?</td>
<td>Look for an ample, well-ventilated, well-lit, and clean area with clearly marked bins: a blue one for recyclables and one for general waste. (If the building doesn’t have a blue bin, check for the nearest recycling depot at: edmonton.ca/waste) Also look for outdoor bins for on-site composting or grasscycling.</td>
</tr>
<tr>
<td>QUESTIONS TO ASK</td>
<td>WHAT TO LOOK FOR</td>
</tr>
<tr>
<td>-----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>If there's a pool, is it being operated in an energy-efficient manner?</td>
<td>Ask about the pool operation and see if the temperature is turned down in the summer months or if thermal blankets are placed over the pool at night. Visit: energy.gov/energysaver/swimming-pool-covers</td>
</tr>
<tr>
<td>If there's a fitness room, is the fitness equipment energy-efficient?</td>
<td>Ask if any of the equipment is energy-efficient. While no fitness equipment has been certified ENERGY STAR, non-electric versions are available for some of the most popular exercise machines. Some fitness equipment is energy-generating and is used to power the lights and music in the fitness room!</td>
</tr>
</tbody>
</table>
August 8, 2013

A/ Program Manager,
Corporate Environmental Management
City of Edmonton
Sustainable Development, Urban Planning and Environment
Suite 750, Tower 1 Scotia Place
10060 Jasper Avenue NW
Edmonton, AB, T5J 3R8

RE: Green Home Guide

On behalf of the 3,200 members of the REALTORS® Association of Edmonton, I extend many thanks for your efforts to produce the City of Edmonton’s Green Home Guide. This will be a very useful document for consumers which provides background information on various energy efficiency improvements and green features that are possible in today’s residential market (both new and resale). The booklet will help convey the value and benefits of the green features that are available in the market with a desired outcome of better informed consumer choice.

The REALTORS® Association of Edmonton is pleased to endorse the publication and to provide access to copies to our members and their clients. Our marketing department will provide a copy of the appropriate logo to print on the publication.

Yours truly,

Darrell Cook
President
August 28, 2013

A/ Program Manager,
Corporate Environmental Management
City of Edmonton
Sustainable Development, Urban Planning and Environment
Suite 750, Tower 1 Scotia Place
10060 Jasper Avenue NW
Edmonton, AB, T5J 3R8

RE: Green Home Guide

The Canadian Home Builders’ Association – Edmonton Region is pleased to lend its support to the City of Edmonton’s Green Home Guide.

This publication has a wealth of information and timely advice for new home buyers and home owners planning their renovation. By bringing together information on green features and innovations, energy-saving ideas and facts and tips on green practices within one concise document, everyone involved in home building and renovating will have a valuable resource to assist in making informed choices.

The creative partnership of municipal initiatives, corporate commitments and individual actions enables all of us to positively affect our environment, one small footprint at a time.

Yours truly,

Rod Taverner
President